I* I Defence Research and Recherche et développement
Development Canada pour la défense Canada

DEFENCE

A Multi-Packet Signature Approach to
Passive Operating System Detection

Annie De Montigny-Leboeuf

The work described in this document was sponsored by the Department of National Defence under
Work Unit 15bf.

Defence R&D Canada - Ottawa
TECHNICAL MEMORANDUM
DRDC Ottawa TM 2005-018

Communications Research Centre Canada
TECHNICAL NOTE
CRC-TN-2005-001
January 2005

I+l

Canada

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 2005 2. REPORT TYPE _
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
AM qu-Packet Signature Approach to Passive Operating System £b. GRANT NUMBER
Detection (U)

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defence R& D Canada -Ottawa,3701 Carling Ave,Ottawa REPORT NUMBER

Ontario,CA,K1A 024

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

Remote oper ating system discovery can provide valuable contextual information regarding the computers
connected to the network. In particular, operating system discovery can help identify potential vulnerable
computersor may help prioritize alarmsand responsesin times of attack. The Network Security Research
Group at the Communication Resear ch Centre (CRC) has developed novel techniquesfor passive
operating system discovery. The methodology developed allows derivation of a signature from a set of
packets. Thetestsare conducted passively on regular traffic. They are non-intrusive and do not rely on
accessto application or user data. Becausethey are passive, the techniques do not consume bandwidth and
do not disrupt network assets. Over a dozen tests have been developed to analyse headers of packets seen
on a network. Thetestsare conducted on header s of varioustypes of protocols. ARP, IP, ICMP, UDP and
TCP. Thisdocument describesthetestsin detail. They have been implemented in a prototype written in
JAVA, which includes a database containing the " finger prints' of almost 200 ver sions of operating
systems. The prototype was used to collect these signatures from our testbed and was also used on real user
traffic for preliminary evaluation of the tests' performance.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 182
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Multi-Packet Signhature Approach to
Passive Operating System Detection

Annie De Montigny-Leboeuf
Communications Research Centre Canada

The work described in this document was sponsored by the Department of National Defence
under the Work Unit 15bf

Defence R&D Canada — Ottawa

Technical Memorandum
DRDC Ottawa TM 2005-018

Communications Research Centre Canada

Technical Note
CRC-TN-2005-001
January 2005

© Her Mgjesty the Queen as represented by the Minister of National Defence, 2005

© Samajesté lareine, représentée par le ministre de la Défense nationale, 2005

Abstract

Remote operating system discovery can provide valuable contextual information
regarding the computers connected to the network. In particular, operating system
discovery can help identify potential vulnerable computers or may help prioritize
alarms and responsesin times of attack. The Network Security Research Group at the
Communication Research Centre (CRC) has devel oped novel techniques for passive
operating system discovery. The methodology developed allows derivation of a
signature from a set of packets. The tests are conducted passively on regular traffic.
They are non-intrusive and do not rely on accessto application or user data. Because
they are passive, the techniques do not consume bandwidth and do not disrupt network
assets. Over a dozen tests have been devel oped to analyse headers of packets seen on
anetwork. The tests are conducted on headers of various types of protocols: ARP, IP,
ICMP, UDP and TCP. This document describesthetestsin detail. They have been
implemented in a prototype written in JAV A, which includes a database containing the
“fingerprints’ of almost 200 versions of operating systems. The prototype was used to
collect these signatures from our testbed and was also used on real user traffic for
preliminary evaluation of the tests' performance.

Résumé

La capacité de reconnaitre a distance les systemes d’ expl oitation peut permettre

d’ acquérir de I'information contextuelle et précieuse a propos des ordinateurs
connectés aun réseau. En particulier lareconnaissance des systémes d’ exploitation
peut permettre d identifier des ordinateurs potentiellement vulnérables ou peut
contribuer a prioriser les alarmes et les réactions en cas d’ attaques. Le groupe de
recherche en sécurité des réseaux au Centre de recherche sur les communications
(CRC) adéveloppé de nouvelles techniques pour |a reconnaissance passive des
systémes d’ exploitation. La méthodologie développée permet d’ établir des signatures
s éalant sur plusieurs paquets. Lestests reposent sur des techniques passives et non-
intrusives d' analyse de trafic régulier. L’acces aux données provenant des applications
et des usagers n’est pasrequis. Lestechniques étant passives, elles ne consomment
pas de bande passante et ne perturbent pas les composantes du réseau. Plus d’ une
douzaine de tests ont été concus pour analyser les entétes des paquets circulant sur le
réseau. Les protocoles dont les entétes sont examinées sont: ARP, IP, ICMP, UDP et
TCP. Cedocument décrit en détail les différents tests développés. Cestests ont été
implémentés dans un prototype, écrit en JAVA, qui contient une base de données
comprenant les «empreintes» de pres de 200 versions de systémes d’ exploitation. Le
prototype a permis de recueillir ces signatures sur un réseau de test ainsi qu’ a évaluer
les différentstests avec du trafic d' usagers véritables.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 [

This page intentionally left blank.

DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

Executive summary

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

A tool that has the ability to identify the operating system (OS) version of computers
connected to a network is useful to both network managers and security analysts
charged with protecting the network. An operating system identification tool can
provide significant contextual information, and is even more valuable if the tool itself
doesn’t disrupt network traffic and can’t normally be detected.

The Network Security Research Group at the Communication Research Centre (CRC)
has developed a series of tests for passively detecting operating systems, and has
implemented a prototype software tool as a proof of concept. Thetool is completely
passive as it does not generate any probe or trigger packets. The approach takenis
based on the analysis of packet headers at the data-link, network, and transport layers,
thus the tool does not rely on access to application data. The methodology goes
beyond individual packet analysis commonly used in open source and commercial
operating system identification tools. Because certain packets have influence on
subsequent packets, some information can only be gained when related packets are
analysed together. The uniqueness of this approach isin the use of lightweight state-
aware mechanisms to derive signatures from multiple packets. Over adozen tests
have been devel oped to analyse headers of packets seen on anetwork. Thetestsare
conducted on headers of various types of protocols: ARP, IP, ICMP, UDP, and TCP.
A number of these tests are adaptations of active techniques, i.e. techniques that
normally require aform of interaction.

The passive OS detection tool was programmed in Java and is one of a set of tools
developed by the team for network monitoring and analysis. It includes a database
containing the signatures of close to 200 versions of operating systems among the
most popular OS families (Linux, SunOS, MacOS, Windows, FreeBSD, OpenBSD,
NetBSD, Novell, BeOS, and QNX). When atest produces a signature that cannot be
found in the database, a mechanism to look for an alternative signature is called upon.
A module manages the information coming from all the tests and attempts to identify
the set of possible operating systems on which the individual tests agree.

The prototype includes automated learning capabilities, verification capabilities, and a
regular mode of operation during which the tool performs passive OS detection on live
traffic or pre-recorded traffic traces.

The signatures contained in the database were obtained using the tool in a controlled
environment. Target operating systems were installed and queried methodically in the
local testbed and the prototype was used to collect and store the signatures observed.
This helped achieving control and uniformity during the capture process.

This document describes the OS identification techniques implemented in the tool, the
signature collection process, and some preliminary results obtained on real user traffic.
The key elements of these signatures are described in detail in the core document and
the signatures for all tests are provided in Annex. Some operating systems have very

distinct signatures that alow the prototype to recognize them easily, but in many cases
it isthe combination of the tests that leads to a small subset of possible guess. Some
peculiar behaviour has been observed during this study, not all of which could be
thoroughly tested. The testing process and prototype itself would benefit from a
number of modifications and extensions. While little resource at thistime is being put
on enhancing the program, the signature database is being updated as new operating
systems are released. The prototype isin a stage where it is considered a proof of
concepts. The tool works as a standal one application and was d so integrated into in-
house information gathering tools. The concepts are being considered to complement
a Scenario-Driven Intrusion Detection System under development within the team.

A. De Montigny-Leboeuf. 2004. A Multi-Packet Signature Approach to Passive
Operating System Detection. DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001.
Communications Research Centre Canada. Defence R& D Canada - Ottawa

iv DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

Sommaire

Un outil qui alacapacité didentifier laversion du systéme d'exploitation (SE) des
ordinateurs reliés a un réseau est utile aux administrateurs de réseau ainsi qu’ aux
analystes de sécurité responsables de la protection du réseau. Un tel outil peut fournir
deI'information contextuelle, et est davantage utile S'il ne perturbe pasletrafic de
réseau et ne peut étre détecté. Le groupe de recherche en sécurité des réseaux au
centre de recherche sur les communications (CRC) du Canada a dével oppé une série
de tests pour détecter passivement les systémes d’ exploitation. Le groupe a développé
un prototype pour valider le concept. L'outil est complétement passif car il ne produit
aucun trafic pour sonder leréseau. L'approche adoptée est basée sur I'analyse des en-
tétes de paguets aux niveaux des couches de liaison de données, de réseau, et de
transport. L'outil ne nécessite donc pas |’ accés aux données d'applications. La
méthode dépasse I'analyse individuelle des paquets, méthode d'identification passive
des systéemes d’ expl oitation généralement utilisée dans leslogiciels libres (« open
source ») et commerciaux. Or, puisque certains paquets transmis ont de |'influence sur
les paguets ultérieurs, certaines informations ne peuvent étre obtenues qu’ en analysant
les paquets ensemble. La particul arité de I’ approche adoptée est dans |'utilisation de
mécanismes simples mais capable de dériver des signatures s’ é&endant sur plusieurs
paquets. Un peu plus d'une douzaine de tests ont été dével oppés pour anayser les en-
tétes des paguets circulant sur un réseau. Lestests sont effectués sur divers types d'en-
tétes de protocole : ARP, IP, ICMP, UDP, et TCP. Un nombre de ces tests sont des
adaptations de techniques actives, ¢’ est-a-dire qui requiérent normalement une forme
d interaction.

L'outil passif de détection de SE a été programmeé en Java et fait partie d'un ensemble
d'outils dével oppés par I'équipe pour lasurveillance et I'analyse de réseau. 1l inclut
une base de données contenant les signatures de pres de 200 versions de systéme

d’ exploitation parmi les familles les plus populaires (Linux, SunOS, MacOS,
Windows, FreeBSD, OpenBSD, NetBSD, Novell, BeOS, et QNX). Quand un test
produit une signature qui ne peut pas étre trouvée dans la base de données, un
mécanisme pour rechercher une signature aternative est appelé. Un module contréle
I'information venant de tous les tests et essaye d'identifier I'ensemble des systemes

d exploitation possibles sur lequel les différents tests sont en accord.

L e prototype inclut une capacité d’ apprentissage automatisé, de vérification, ainsi

gu’ un mode de fonctionnement régulier permettant la détection passive de SE en direct
ou sur destraces de trafic pré-enregistrées. Les signatures contenues dans la base de
données ont été obtenues al'aide de I'outil dans un environnement controlé. Les
systemes d’ exploitation ont été installés et testés méthodi quement dans e banc d'essal
et le prototype a éé employé pour recueillir et stocker les signatures. Ceci aaidéa
maintenir un niveau de control et d'uniformité au cours du processus de collection des
signatures.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 \

Ce document décrit les techniques d’ identification de systémes d’ exploitations
développées au cours de ce travail, le processus de collection des signatures, et

quel ques résultats préliminaires obtenus a partir de trafic d’ usagersréels. Les
éléments clés de ces signatures sont décrits en détail dans le coeur du document et les
signatures pour tous les tests sont fournies en annexe. Quelques systémes ont des
signatures tres distinctes qui permettent au prototype d’identifier facilement leurs
systemes d’ expl oitation, mais dans beaucoup de cas, c'est la combinaison des tests qui
meéne a un petit sous-ensemble de possibilités. Nous avons observé durant cette étude
quel ques comportements particuliers, certains d’ entre eux n’ont pu étre examinés de
facon exhaustive. Le processus d' évaluation et le prototype lui-méme tireraient
bénéfice d'un certain nombre de modifications et d’ enrichissements. Tandis que peu
de ressources sont actuellement affectées al’ amélioration du programme, la base de
données des signatures est toutefois mise ajour lorsgue de nouveaux systemes

d’ exploitation sont mis en circulation. Le prototype est dans un état validant le
principe. L'outil fonctionne comme application autonome et a également été intégré
dans des outils développés al’interne pour la surveillance et I'analyse de réseaul.

L’ équipe est présentement a considérer |’ applicabilité des principes utilisés pour
détecter les systemes d’ exploitation pour complémenter un systéme de détection
dintrusion fondé sur des scénarios.

A. De Montigny-Leboeuf. 2004. A Multi-Packet Signature Approach to Passive
Operating System Detection. DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001.
Centre de recherche sur les communications Canada. R & D pour la défense Canada - Ottawa

Vi DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

Table of contents

N 1= o [
EXECULIVE SUMIMAIYeueiiiiiecie st eee sttt te sttt e st et st e et et e s aeesesbeeaaesbeereentesaeeneebesaeensesneenneneas iii
0] 1010 7= 1TSS %
L= o (=X 0l o0 1 (< g £ SR vii
LISt OF TIQUIES. ...ttt ettt bbb e e e e X
ACKNOWIEAGEIMENES. ...ttt nb e n e nneaeas Xii
1 gL [N o1 o o OSSP 1
2. 2 F 0 (0 (01 0o SR 3
21 Active Fingerprinting TEChNIQUEScoviiiiiereeeeeesee e 3

22 Passive Fingerprinting TECNNIQUES...........ooviiriirieneeeeeses e 5

2.3 Header fields used in fingerprintingcccoveveveieeie s 6

231 [IPDont Fragment bit........ccooiiieiiiieie e 6

232 TP TIMETO-LIVE.c e 6

2.33 [P SEIVICE TYPL..c ettt 7

234 IP1dentifiCalioncccouririririerese e 7

235 ARPTarget Hardware address.........oovvveeeeeeeeneniesieseseesee e 8

236 ICMP COUE.cceeciieeeee ettt 8

2.3.7 ICMP Identifier and ICMP Sequence NUMbercccoovvveverieeinennens 9

2.3.8 Dataof ICMP EChO MESSAJESceoveeveciecierte ettt 10

239 Dataof ICMP EIrOr MESSAgEScoeieereeeieriesiesiesre e snesseseeeens 10

2.3.10 TCP Sequence NUMDETccceiiiieie e ceese et s 11

2.3.11 TCP Acknowledgment NUMDBET.......c.cccoooeeiiiiececece e 11

P A 1 O = = o SRS 11

2.3.13 TCP RESEINVE.....c.ociieeeeeeeee ettt ens 13

2.3.14 TCP WINUOWooiuiiiiriiiiieieieisiesie sttt eens 14

2.315 TCP OPLIONS. ...ttt sse s ss e b s sn s e e e ens 14

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 Vi

3. Passives TESES DEVEIOPEd.........ccuviiiie ettt e ens 19

31 CategorieS Of PaSSIVE TESES........cccuieririeriere s 19
B L1 SINGIEION ..ot s 19

312 SAMPIE e e e 20

313 SHMUIUSTRESPONSE ..ottt 20

3.2 TESIS DESCIIPLIONS. ...ttt 21
3.21 PassveTest TCP_SYN (SINGIEtON)ceevveviieeecieiiese e, 21

3.22 PassiveTest ARP_Request (SINgIEton)cccevvveevvceece v 22

3.2.3 PassiveTest TCP_ISN (Sample)ccoveirerreneinieereeseeesieseeees 23

324 PassiveTest IP_ID (SAMPIE) ...cccvcevereiieeieeeeeeee e 26

3.25 PassveTest TCP_TS(SaMPle).....cccccvieeieenirieerie e 30

3.26 PassiveTest_ ARP_Retransmit (SamMple)........ccccovvvererenenenenieieeene 32

3.2.7 PassiveTest ICMP_ID_SEQ (Sample)cccooverrerireririerieresieseeiens 33

3.2.8 PassveTest TCP_SYNACK (Stimulus-Response)cccccveeveenee. 37

3.29 PassveTest TCP_RSTACK (Stimulus-Response)ccccccvveveenee. 39

3.2.10 PassiveTest_ICMP_Unreach (Stimulus-Response)............cccveereenee. 40

3.2.11 PassiveTest_ICMP_Echo (Stimulus-Response)ccceceevereeeennne. 41

3.212 PassiveTest ICMP_Info (Stimulus-Response).........cccceveevecreeeeennene 43

3.2.13 PassiveTest_ICMP_TS (Stimulus-Response)..........ccceeereereeeevennne 44

3.2.14 PassiveTest_ICMP_Mask (Stimulus-Response)cccccevveveveunne. 45

4, ColleCting the SIGNAIUTES..........couieeieeeeeeee e 47
41 Computer Network Testhed...........ccooiiririie e 47
4.2 Stimulation Procedures and Traffic Capture..........ccccoveeeeveieeseceece e, 51
421 PassVETESE TCP_SYN ..o 52

422 PassSVETESt TCP_ISN ... 52

423 PasSVETESE [P ID ... 53

424 PasSVETESE TCP_ TS ...t 53

425 PassveTest ICMP_ID_SEQ......ccooiiiriniireireseeseses s 53

426 PassiveTest ARP _Request and PassiveTest ARP_Retransmit......... 54

427 PassveTest TCP_SYNACK and PassiveTest TCP_RSTACK 54

428 PassiveTest ICMP_Unreach/Echo/INfO/TSIMasKcccoeeeevevreeenee. 55

5. Field TeSt EVAIUBLIONcoeiiiieiciesieie et 56

viii

DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

6. Development State of the ProtOtyPe.......c.eccveveceeviicee e 70

7. Limitations and FULUIE WOTK..........coeiirenieieinenesesese et 74
7.1 LIMITAEIONS. ...ttt bt 74

7.1.1 Fingerprinting COUNLEIMEASUIEScoverremeerieriesreseeseesseseesneseeeens 74

7.1.2 Network Conditions and Configuration.............ccoceeererereneneeneeneene 75

7.2 FULUNE WOTK ... 76

8. (0700 11T o SRS 78
L= £ 100 T 85
ANNEX A: COllECtEA SIGNEIUTES.......ccueieeieieeeieeieet sttt sne e 88
Annex B: Active OS identification tools: Analysis of Nmap and Xprobe.............cccccevveeennee. 143
OS SCAN WIth NIMBPD ... 143
DesCription Of tESES TL-T7 ...ccceeiieeececeee e e 144

Description Of the PU LESL.....c.ooiviie e 146

DesCription Of 1S TSEO ...cveveeeeee et 148

General Remarks 0n OS diffEerenCesS.........cceveeeerenine e 151

OS SCAN WIth XPIODE......viticee ettt re e e 152
Description of tests based on the UDP packet...........cccceovveeceiecciece e, 152

ICMP EChO REQUESE PACKEL ..o 153

ICMP Timestamp REQUESL........coeiieieiee ettt 154

ICMP Information REQUESL..........ccueiuieie et 154

ICMP Address Mask REQUESL.........ccueveeerereeieriesesie e 154

General Remarks 0n OS diffErenCes.........coevveeeerenine e 154

Graphical representation of Xprobe slogictree........oovvvveveveieece e, 154

List of symbols/abbreviations/acronyms/initialiSms..........ccccceviiieieiecie s 160
GlOSSAY ...ttt bbbt h bRt e R e e et R e n et nen e 161

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 iX

List of figures

Figure 1. Limitation due to the position of the monitor when doing sequencing analysis....... 24
Figure 2. Testbed from which the signatures were ColleCted............ooviriierinencieceeesene 48
Figure 3. Test SEECHION MENUccuiiuiee ettt re e e e 71
Figure4. CRC’ s Active Network Mapping TOOI GUI........ccciiriiiiiicieeeeseseseseseeeeeeiene 72
Figure 5. CRC’ s Passive Network Monitoring TOOl GUIcceveieiiiinincscneceeeeeine 73

List of tables

Table 1. Typical Maximum Transmission UnitsS (MTUS) ..o 15
Table 2. Tested Operating SYSLEIMSccveiiiieie ettt s n e re e snas 49
Table 3. Tested Operating system: LinuxX distribution..............cccoeeee i, 50
Table 4. Stimuli used to collect SYN/ACK and RST/ACK SIgNatures..........cccoeeveeeereneneens 54
Table 5. TraffiC TrAaCEHLcce et 56
Tabl@ 6. TraffiC TrACEHZeieeeieceeeee bbb 57
Table 7. Results Of iNdiVidUal tESES...........ciiiiiieieieeee e 59
Table 8. TESIS PAraMELENS.cceitieeeeeeeeee et 60
Table 9. Results obtained from Traffic Trace #1 for each hostcccoveeiiccncincince 62
Table 10. Results obtained from Traffic Trace #2 for eaCh host ..o 65
Table 11. CommeNtS 0N EBCHTESE ..o 80
Table 12. PasSIVETESE TCP_SY N w..ooveeieereeeeeeeeeeeseseeeseesesessseseseses e sesessssesesesessesseesseesssesssenees 88
Table 13. PassiVETeSt ARPREJUESL........c.ccueeie ettt ettt st st s n e et s nnas 89
Table 14. PassiVETESL TCP_ISN ...ttt et ee e 91
Table 15. PassiveTest_Echo_IP_ID (Subtest of PassiVETESt IP_ID) w......ceveeeereeereeeeeeeeneenne. 95

X DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

Table 16.

Table 17.

Table 18.

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

PassiveTest NULL_IP_ID (Subtest of PassiVETESE IP_ID)ceevveeveeeesererereseenns 95
PaSSIVETESE TP 1Deiceieieceeie sttt ettt st sne e 100
PasSIVETESE. TCP_TS... ettt st 104
PassiveTest ARPREIIANSMILcceeiiiiciese ettt 105
PaSSIVETESE. TCP_ SYNACK ...eeveeveeeeeeeeeeeseesseeeeseeesseseseeeseeseseess s seseeeseseseseseenenes 107
PassIVETESE TCP_RSTACK ...ttt 127
PassiveTest ICMP _UNIeaChcoovcieiiiecie e 130
PassiveTest ICMP _ECKO..........cooeicee e 134
PasSIVETESE ICMP_INFO ...oueeiieiees e 135
PasSIVETESE ICIMP TS ... oottt st see e e 136
PASSIVETESE ICMP_IMBSKveeeeeeeereeeeeeseeeeeseeeseeseeeseseessseseseses e sesesessess s seseseseenenes 137
PasSIVETESt_ICMP_ID_SEQceueieeeeeeeeeeeeeeseeeeeseeeseeeseseses e sesseeeseeeseseeseeee 138
PassiveTest_ICMP_ID (Subtest of PassiveTest ICMP_ID_SEQ)......ccccoeereven. 140
PassiveTest ICMP_SEQ (Subtest of PassiveTest ICMP_ID_SEQ)ooveeveenn. 142

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 Xi

Acknowledgements

Thiswork was conducted at the Communications Research Centre Canada (CRC) and
was partially funded by Defence R&D Canada (DRDC), National Defence. The
author would like to thank her co-workers, Frédéric Massicotte, Denis Fournier, and
Daniel Tremblay and also the co-op students who came to CRC during the years
2001/2002 for their tremendous contribution in the development of the prototype.
Thanks to the people of the Information Networks and Systems (DINFO) team at
CRC, in particular Peter Corrigan, for their help in collecting datafor afield triad. The
author would aso like to thank Joanne Treurniet from DRDC for testing some of the
techniques on adifferent data set. Thanks also to Tim Symchych and Frédéric

Massi cotte from CRC for their advice and support during the writing of this document.

Xii DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

1. Introduction

The ability to remotely identify atarget operating system (OS) and version is a definite
advantage when trying to identify vulnerabilities in networked systems. For this
reason, there has been alot of effort from the networking community to develop tools
for OS detection, also referred to as OS fingerprinting. It isalso an interesting area of
research for network security analysts asit provides significant contextual information
regarding the components connected to a network. Network administrators should be
able to fingerprint machines under their control. OS discovery can help identify
possibly vulnerable hosts connected to the network being protected. It can also help
address the problem of false-positives from Network Intrusion Detection Systems
(NIDS).

Traditional network security devices such as NIDS, firewalls, and security scanners
usually operate independently of one another, with virtually no knowledge of the
network assets they are defending. Thislack of information can result in ambiguities
when interpreting alerts and making decisions on adequate responses. Even with
increased accuracy of security devices, network security analysts still must sort
through atremendous number of potentia security events. OSidentification can
provide timely significant information about the components referenced by the alarm.
This contextual knowledge can help reduce the rate of false positive alarms. Several
attacks have distinctive signatures based on port numbers and data content and can
thereby be detected by traditional NIDS. The NIDS are however likely to raise false
aarmsif an attack is randomly targeting several computers. Many of the targeted
systems may not be vulnerable to this attack. To alow network administrators focus
their attention on vulnerable targeted systems, an alert generated for a computer
running a non-vulnerable OS should get alow priority. When attacks do occur or
when aknown virusis spreading, the OS information can be used to ensure that human
resources are not wasted chasing down false positives.

Based on observations made during the analysis of severd passive and active OS
detection tools, we have devel oped a series of tests for detecting operating systems
passively. Some of these are based on novel ideas; severa others are adaptation of
techniques that are normally conducted actively by other OS fingerprinting tools. We
confine the analysis to headers at the data-link, network, and transport layersto avoid
relying on access to application data. Tests are conducted on the headers of different
kinds of protocols: ARP, IP, ICMP, UDP and TCP. The methodology goes beyond
individual packet analysis. Stimulus and response packets are identified, paired, and
are evaluated together to allow for more accuracy. Our method also allows for
analyzing samples of packets transmitted by a computer (typicaly to observe how a
certain header field evolves). We have developed a prototype based on these adapted
techniques and built a database containing the fingerprints of almost 200 versions of
operating systems.

The remainder of the document is structured as follows: the background section
(section 2) coversthe essential concepts of OS fingerprinting. It discusses other

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 1

related works and contains a detail description of the fields that can be used for
detecting OSes. Section 3 describes the three categories of passive tests devel oped
(Singleton, Sample, Stimulus-Response). It then provides technical details for each of
the fourteen individual tests. Section 4 describes the process used for collecting the
signatures from the testbed network and section 5 describes preliminary results
obtained on a corporate network.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

2. Background

2.1

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Fingerprinting methods can be broadly classified into two categories: active and
passive. Theterm active refers to methods that inject traffic into the network. These
methods typically consist of sending carefully chosen test packets and observing the
reaction they stimulate. In contrast, passive techniques observe existing traffic without
disturbing the networking environment, and are therefore lessintrusive. Typically,
passive methods consist of analysing traffic traces captured using a packet filter utility
such as tcpdump[1]. Whether the methods are active or passive, OS fingerprinting is
based on the principle that there are differences in the implementation of the network
protocols (often called networking stacks) among various operating systems.

Active Fingerprinting Techniques

The differences among the networking stack implementations are especialy noticeable
when it comes to handling non standard (or abnormal) packets. To detect these
differences, one can send a carefully crafted packet (a stimulus) to atarget and analyse
the behaviour it provoked. Note that the target’ s behaviour could be to not respond at
all.

Some tools such as ring[2] or Induce-ARP[3] use techniques based on the
retransmission behaviour of their target. Ring works at the TCP level and was
developed by the Intranode Research Team. It stimulates itstarget with a SYN packet
sent to an open port, when it receives a SYN/ACK response from its target, instead of
completing the normal TCP three way handshake by sending an ACK packet back, it
remains quiet. Itisat this point that the targets will respond differently according to
their TCP stack implementation. Some will give up on the communication right away,
others, believing a packet loss has occurred, will retransmit the SYN/ACK packet.
Since this packet will also remain unanswered, some targets will retransmit again, and
so forth until they finaly give up. Ring detects what operating system the target is
running based on the number of retries and the delays between them. The current
version has alimited number of signatures, but OSes do seem to be distinguishable
according to thistechnique. For example, Windows 98 sends 3 retransmissions,
waiting 3 seconds before sending the first retransmission, then 6 and 12 seconds
between the other two. Windows 2000 behaves similarly but stops after the first two
retransmissions. Not all OSes double the delays between retransmissions, and some
send much more than three. The reader can refer to the document [2] describing ring
for more details.

The principle behind Induce-ARP is similar but operates at the Address Resolution
Protocol (ARP) level. The user of the tool must be connected to the same “ ARP-
utilising” link layer (e.g. Ethernet, FDDI) asitstarget. Computers connected to such
networks can communicate with one another provided they have their peer’s IP and
hardware addresses. ARP requests are issued each time a host needs to obtain the
hardware address (also known as the MAC address) associated with an |P address.

Induce-ARP stimulates its target using an ICMP echo Request with a spoofed’,
unused?, source IP address. Upon reception of the forged packet, the target broadcasts
an ARP request, querying for the MAC address associated with the IP address it thinks
it was probed from. But because this IP address is unused, the ARP request remains
unanswered. Thisleadsto two situations, either the target gives up on this
communication, or it reissues the ARP request. While most operating systems give up
after the firgt attempt, some OSes such as Solaris and Linux can be fingerprinted using
this technique, asthey do send afew retransmissions. Solaristries 6 timeswithal
second delay between each retransmission, while Linux tries 3 times waiting 1 second
between each attempt. An attractive aspect of thistechniqueisthat ARP requeststo
nonexistent |P address are likely to be seen as part of regular traffic. For example, this
happens when a user tries to communicate with atemporarily down machine, or when
auser simply mistypes the IP address he or she istrying to reach. Note however that
any identification based on delays may be unreliable due to network congestion.

Other tools go deeper in the packets they receive from their target to see how header
fields have been set. This often leads to more precise OS detection. Nmap[4], a
popular port-scanning tool, has been equipped with active OS detection capabilities for
sometimesnow. Thetool is still being actively enhanced and the fingerprint database
for its OS testsis quite impressive. It contains fingerprints for the most to the least
popular OSes one can have access to, and the results often pinpoint the version quite
precisely. The fingerprinting approach was inspired by an earlier tool named
queSO[5]. One problem with nmap isthat it generates alot of traffic and some of its
stimuli contain abnormal settings that can trigger alarms from intrusion detection
systems (IDS). Nonetheless, reviewing the techniques used by the tool and their
resultsis quite instructive. Fyodor, the author of nmap, has produced an introductory
paper [4] on TCP/IP stack fingerprinting which first appeared in the Phrack e-zine
(issue 54 article 9). Severa passive tests developed during this project were inspired
by nmap. For reference purposes, the techniques used by thistool are summarized in
Annex B.

While nmap mainly focuses on differences in the TCP protocol implementations,
another OS detection tool, xprobe[6], achieves good accuracy using the ICMP
protocol. Xprobe's project isfairly recent and the variety of tested operating systems
isalittle constrained. On the other hand, the number of packets required to fingerprint
atarget is smaller, and the packets used are likely to appear on adaily basis as part of
regular network traffic. Xprobeistherefore stealthier. Its author, Ofir Arkin, has
produce documentg[6][7] on the techniques used and observations made regarding the
differences among the ICMP protocol implementations. An overview of xprobeis
provided in Annex B.

! “Spoofing” means forging the sender’s identity so that the packet appears as coming
from somebody else.

Z By the term “unused”, we mean that no host connected to the network at the time of
probing is configured with this IP address. For the test to work, the spoofed IP address
must be unused, and within the subnet range of the other two parties (the target, and the
host running the toal).

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

2.2 Passive Fingerprinting Techniques

Instead of probing the target with crafted packets as active techniques do, passive
techniques capture packets flowing on the network and inspect their content. The
packet capturing process does not disturb the communications; it smply “listens” for
them. Passive techniquestypically listen for special kinds of packets and then inspect
how header field values have been set. One must keep in mind that some parameters
vary depending on the state of the connection. For example, the window sizefieldina
TCP packet advertises the number of bytesthe host is prepared to receive in its buffer
space. While OSestend to start with their own default value at the TCP connection
set-up, the window sizeis very likely to change throughout a session as packets are
transmitted and processed. This means that depending on the fields examined, not all
packets of a connection may be suitable for analysis.

In the summer of 1999, a person with the online name “ photon” posted a message to
the nmap-hackers mailing list [8] in which he described some ideas for doing passive
OSfingerprinting. The thought of doing OS detection without disturbing
communications, or from another point of view, without being detected, is very
attractive and several lines of research have been active since then.

For example, Michal Zalewski has developed atool called pOf[9] that wasinitialy
listening for SY N packets (the tool has since evolved to examined afew other types of
packets). Another tool, which includes a passive OS detection functionality along with
several other network mapping capabilities, is ettercap[10]. When running in passive
mode, ettercap captures either SYN or SYN/ACK packets to identify the OS. While a
SYN and a SYN/ACK packet are related, they are inspected by ettercap independently.
Some care should be taken when interpreting the results ettercap and pOf produce
based on SYN/ACK packets, as some of the fields these tool s examine depend on what
had been sent in the SY N packet. To the best of our knowledge, no currently available
tools take this into account.

Jose Nazario[11] from Crime Labs Research has written a paper on passive
fingerprinting using network client applications. The technique he describes consists
of looking at the application layer, seeking specia strings that could identify the
operating system. Telnet and FTP banners for instance often state in clear text the OS
that the server is running. Some applications also involve option negotiation prior to
exchanging any data, and because applications are often platform dependent, this can
sometimes be used in OS fingerprinting. While information obtained in this manner
can be quite precise’, these techniques rely on the availability of the data at the
application layer. Thislimits the applicability of the techniques. For example, the

® Masquerading can however be reatively easy at the applications layer using third
party tools or simply by modifying the properties. Fields like HTTP User-Agent and
X-Mailer are not even mandatory. The content of such fields can be overwritten
without affecting the communication. In the same train of thought, “Banners’ are
systematically rewritten nowadays by system administrators. Obfuscation and
masguerading at the network and transport layers are also feasible, but care must be
taken not to break connectivity.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 5

application layer may be encrypted, asit is the case with the Secure Shell (SSH) and
the Secure Sockets Layer (SSL) protocols. Another limitation of an application layer
packet analysis approach is when the application data in each packet isremoved at the
time of capture. Depending on the organisation’s policy, this may be done for privacy
issues’. Limiting the capture length of packet is also acommon practice when storage
capacity isin place to allow for post analysis of traffic traces. Nonetheless, the
techniques presented in [11] are simple to implement and can produce reasonably
accurate results.

2.3 Header fields used in fingerprinting

This section enumerates the primary fields contained in IP, TCP, ARP, and ICMP
headersthat can be used for detecting OSes. These protocols belong to the IPv4
protocol suite, which isthe focus of thiswork. For each field, we give a brief
description of its intended purpose, and then we describe how it can be used in OS
fingerprinting.

2.3.1 IP Don’t Fragment bit

Setting the IP “don’t Fragment” (DF) to 1 instead of O specifiesthat the IP
datagram should not be fragmented. Many operating systems set the DF bit
by default in some of the packets they send. For example, alot of systems
have this bit set in datagrams carrying TCP segments with the SYN flag on.
However, even then, there are some differences: before setting the DF bit,
some implementations ensure that “only” the SYN flag is set, while some
others check that “at least” the SYN flag is set. This means that some
systems have the DF bit set in SYN but not in SYN/ACK packets, and some
others have it set in both SYN and SYN/ACK packets. There are severa
other kinds of packets for which the DF bit is set differently by OSes.

2.3.2 IP Time-To-Live

ThelP“Time-To-Live” (TTL) field sets an upper limit on the number of
routers a packet can pass through. This prevents a packet from getting caught
inrouting loops. The valueisinitialised by the sender, and decremented by
one by every router that processes the packet. Theinitial value varies
depending on the Operating system. Moreover, some OSes use different
values depending on the type of packet they send. For example BSD-like
systems use a value of 64 in a datagram carrying a TCP segment, and a value
of 255inan ICMP message. From experiments conducted on our testbed, we
were a so able to observe that, in special cases, some OSes echo the TTL
value they receive instead of using their own default value. This happens
with some Solaris, Mac OS, and Novell versions for instance.

“ It is at this layer, for example, that one finds login names, passwords, or e-mail
messages.

6 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

2.3.3 IP Service Type

The 8-bit long IP Service Type as described in RFC 1349[12] consists of
threefields. Thefirst field, “Precedence” is 3-bit long and is intended to
prioritise the IP datagram. The second field, “Type-of-Service” (TOS), is 4-
bit long and isintended to describe how the network should make tradeoffs
between throughput, delay, reliability, and monetary cost. Thelast field,
“Must-Be-Zero” (MBZ), isonly one bit long and is unused. The settings of
the TOS hits can be chosen at the application level. Therefore, if the specifics
of the application layer protocol are not considered, relying on the TOS field
when doing OS fingerprinting can be misleading. The xprobe OS
fingerprinting tool takes the TOS field into account because some systems set
the Precedence bitsto a specia default value when sending an ICMP error

message.

The whole octet is now being replaced by the Differentiated Services
mechanism for Quality of Service. As specified by RFC 2474[13] and RFC
3168[14], it consists of two fields: the first 6 bits make the “ Differentiated
Services Codepoint” (DSCP), and the last two bits describe the “ Explicit
Congestion Natification” (ECN) field at the IP level. The key point is that
with Differentiated Services mechanisms, this octet is no longer the sole
concern of the two end-points only: intermediate routers handling the packet
may change the setting. This limits even more the reliability of thisfield
when fingerprinting end-point systems.

2.3.4 |IP Identification

The IP “Identification” (ID) field uniguely identifies each IP datagram sent by
ahodt. It plays animportant rolein the reassembly of fragmented datagrams.
A guidelinein RFC 791 15] indicates that the upper layer that is having the
IP layer send the datagram should choose the value. Thisimplies that two
different IP datagrams, one carrying TCP and one carrying UDP, can have the
same identification field. Note that while this doesn’t cause any reassembly
problem, most operating systems have the IP layer increment a kernel
variable each time an |P datagram is sent, regardless of the upper layer.
Therefore, in most cases the IP identification field is incremented by one each
time the system sends a new datagram. Linux kernels 2.4.x are counter-
examplesto this simple incremental behaviour. In addition to zeroing out the
IP ID value of some special packets, these systems maintain separate counters
for different connections. Solarisand Mac OS prior to Mac OS X also use
Separate counters, one per destination address (independently from the
protocol and the port numbers). Recent versions of OpenBSD (2.5 and above)
use a pseudo-random generator for the IP 1D of each IP datagram. Some
other systems such as Windows 95 have a monotonically-increasing

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 7

behaviour, but instead of incrementing the field by 1 (or 0x0001 in
hexadecimal), they increment it by 256 (or 0x0100 in hexadecimal). Thisis
due to a byte order mishandling (they do not bother putting the counter into
network (big-endian) byte ordering. For example, the IP ID following
0x1234 will be 0x1334, not 0x1235. Nmap isthefirst tool we have seen that
analysesthe IP ID incrementa behaviour of itstarget when doing OS
fingerprinting. It does not have, however, a category for OSes that use
session dependent counters.

2.3.5 ARP Target Hardware address

The ARP protocol alows ahost to ask for the physical address of another
host connected to the same physical network, given only the IP address of this
other host. The headers of an ARP request and an ARP reply have the same
format. Among other fields, thereis one (named Operation) that identifies
whether it is a Request or a Reply, and four fields to bind IP addresses to
Physical addresses. Thesefour fields are the Source Hardware address, the
Source | P address, the Target Hardware address, and the Target |P address.
When a host sends a request, it fills the Source Hardwar e address and the
Source I P address with his own, and also suppliesthe Target |P address for
which it is requesting the physical address. Beforethetarget replies, it fills
the missing address (Target Hardware address), swaps the target and sender
pairs of addresses, and changes the operation code to “reply”.

We observed that when sending the request, the content of the “blank field”
(Target Hardware address) varies with operating systems. Some initiaise it
with 0x000000000000, othersfill it with Oxffffffffffff. Moreover, some
versions of FreeBSD forgot to initialise the field and so it contains alocated
memory garbage.

2.3.6 ICMP code

The Internet Control Message Protocol (ICMP) assists TCP/IP
communications by providing a mechanism to handle errors and control
messages. |CMP headers have a code field that accompanies the type field.
Together, they describe the purpose of an ICMP message. For example, an
ICMP message with type 3, code 2, is a Destination Protocol Unreachable
message. If typeisstill 3 but codeis 3, itisaDestination Port Unreachable
message. For some types of ICMP messages, the code field is meaningless
(the purpose of the message is defined by the type field on itsown). Thisis
the case for ICMP Echo messages that are used to determine whether a
machine is alive (i.e. reachable and responding) on the network. The ICMP
Echo request message is of type 8, and the response (ICMP Echo Reply) is of
type 0. While RFC 792[16] guidelines are to set the code valueto zero in

8 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

both cases (the request and the response), the construction of the Echo Reply
message is described as follows:

“To form an echo reply message, the source and destination
addresses are simply reversed, the type field changed to 0,
and the checksum recomputed.”

That is, the RFC does not mention how to handle the code field.

Windows family systems can be detected using an active test that sends one
ICMP echo Request. It sufficesto set the code field to a nonzero value. In
the response, Windows systems overwrite this value to set the field to zero,
while other systems simply echo the value contained in the Request. This
fingerprint technique is used by xprobe. We also noticed from experimentsin
the testbed that some OSes do not respond to ICMP echo Request when the
ICMP code of is nonzero.

2.3.7 ICMP Identifier and ICMP Sequence Number

ICMP Echo Request/Reply messages contain two header fieldsto aid in
matching the replies with the requests. They are named Identifier and
Sequence Number. As gquoted from RFC 792:

“Theidentifier and sequence number may be used by the
echo sender to aid in matching the replies with the echo
requests. For example, the identifier might be used like a
port in TCP or UDP to identify a session, and the sequence
number might be incremented on each echo request sent.
The echoer returns these same values in the echo reply.”

The ping utility isincluded with most platforms to allow testing for TCP/IP
connectivity. It uses Echo Requests datagram to elicit ICMP Echo Responses
from ahost or gateway. There exist differences among ping implementations
in the setting of the ICMP Identifier and ICMP Sequence Number parameters.
Most implementations use the Identifier to identify Echo Requests aimed at
different destination addresses, and use the Sequence Number to identify
Echo Requests when multiple requests are sent to the same destination
address. This generally leads to the following behaviour: When the ping
application sends n echo requests to a given destination address, the ICMP
Identifier isfixed to a certain value and the Sequence Number is incremented
n times, starting at zero. Next time ping is called, it will choose anew ICMP
Identifier and reset the Sequence Number to zero. Ping utilities based on this
behaviour still show some differences depending on the flavour. The ICMP
Sequence Number is sometimes incremented by 0x0001, and sometimes by
0x0100. Some use the Process ID (PID) astheir ICMP Identifier for each call
of the application.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 9

The ping utility in Windows systems has a different behaviour than the one
described above. They use a constant value for the ICMP Identifier in all of
the ICMP Echo requests, and a global counter for the ICMP Sequence
Number. For example, the constant ICMP Identifier valueis 0x0200 for
Windows 98/2000/X P, 0x0100 for Windows 95/NT, and 0x0300 for
Windows Me. The Windows ICMP Sequence Number counter isglobal in
the sense that it starts at 0x0100 when the first ICMP Echo Request isissued
after areboot (or when the value reaches its maximum 16-bits value), and is
then incremented by 0x0100 for any subsequent ICMP Echo Reguest sent.
While [7] describes observed behaviour of the ICMP Identifier and the ICMP
Sequence Number, we have not seen any OS fingerprinting tool that listens
for ICMP Echo Reguests to infer the OS based on how these two fields are
Set.

2.3.8 Data of ICMP Echo messages

Adding datainto the ICMP Echo Requests allows detection of data-dependent
transmission problems that may occur aong the path. RFC 792 specifies that
the data received in the echo request must be returned in the echo reply
message. It does not specify how much data should be sent, or what the data
should be. Most ping utilities allow the user to choose a pattern to transmit.

If the option is not used, the ping utility sends its own default data. This data
typically includes afixed portion identical in al Echo Requests the ping
utility transmits. Windows' s ping utility sends 32 bytes of dataidentica in
each echo requests. The Unix-based ping utility sends 56 bytes of data, the
last 48 bytes are fixed and the first 8 bytes consist of atimestamp used for the
calculation of the round trip (see the man page of ping for more details).
Novell’ s ping utility sends 12 bytes, of which only the last two are fixed. By
examining the length and content of the ICMP data, one can define atest that
passively tries to identify the ping utility used, which in turn can be
associated with a given OS.

2.3.9 Data of ICMP Error messages

10

There are several types of ICMP messages that are defined to report an error
in the processing of a datagram. Examples of such ICMP error messages are
Destination Unreachable (ICMP type 3), Source Quench (ICMP type 4),
Redirect (ICMP type 5), Time Exceeded (ICMP type 11), and Parameter
problem (ICMP type 12). These messages are delivered to the sender of the
packet that generated the error. They carry the IP header and at least the first
64 bits of the next higher header. Thisis done to help the host that sent the
offending packet to match the error with the appropriate process. If the
protocol above IP uses port numbers, they are assumed to bein thefirst 64

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

data bits of the original datagram's data. Most of the Operating systems will
send back the IP header and the first 64 bits of the next header only. Others
will send more. There are also several OSes that alter the datagram echoed in
the ICMP error message. When this happens, it means that there will be
discrepancies between certain immutable fields® in the original datagram and
those of the echoed version. Both nmap and xprobe exploit these

particul arities to fingerprint their targets by probing an ICMP Port
Unreachable Message (they send a UDP packet to a closed port).

2.3.10 TCP Sequence Number

If we consider the stream of bytes flowing in one direction, the TCP protocol
numbers each byte with a sequence number. The TCP “ Sequence number”
field identifies the sequence number of the first byte carried in the packets.
When a new connection is established, the Sequence Number field contains
the Initial Sequence Number (ISN) chosen by the host for this particular
connection. The way the ISN is chosen when establishing a new TCP
connection varies with Operating systems. To the best of our knowledge,
nmap isthefirst tool that tries to deduce how the ISN numbers are generated
in order to identify the Operating system.

2.3.11 TCP Acknowledgment Number

As mentioned above, every byte of a TCP data stream is numbered. The

“ Acknowledgment Number” field gives the next sequence number that the
sender of the acknowledgment expectsto receive. Generdly, thisis equal to
the Sequence Number of the last successfully received byte of data, plus 1.
Thisfieldisvalid only when the ACK flagison. When respondingto aTCP
segment having abnormal settings, some TCP implementation set the
Acknowledgment Number value differently. Both queSO and nmap verify
the value of thisfield in the responses they get.

2.3.12 TCP Flags

Some TCP segments carry only an acknowledgment, while some others also
carry data. Some segments are requests to initiate or to terminate a
connection. There are 6 flag bits in the TCP header indicating the “ purpose”
of asegment. One or more of them can be turned on at the same time.
Manipulation of TCP flags has been afocal point in many OS fingerprint

> The immutable fields are those that do not change in transit. Thisisin contrast with
the TTL and the checksum fields that do change as they are being processed by the
routers along the way.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 11

12

experiments. When an unconventional setting is used, it can put the TCP
stack of the target in an “undefined state”, and thus the reaction may differ
depending of the OS. QueSO and nmap use this technique in several of their
tests. Following isabrief description of each TCP flag:

URG

The“Urgent Pointer” flag is used to tell the other end that "urgent data" of
some sort has been placed into the stream of data. When theflagissettol, it
validates the value of the “Urgent pointer” field of the TCP header. When it
isset to O, the “Urgent pointer” field is meaningless and thus typically zeroed
out. Theauthor of pOf mentions that some Windows systems do not always
zero out the “urgent pointer” field although the URG flag equals 0 [9]. We
cannot confirm this allegation since this behaviour has not been seen for any
TCP packets produced by the operating systemstested inthelab. That is, al
TCP packets with URG flag equalled to 0 that we examined also had the
“Urgent pointer” field set to 0.

ACK

The* Acknowledgment” flag indicates that the reception of datais being
acknowledged, and it validates the value of the “ Acknowledgment Number”
field.

PSH

The “Push” flag tells the TCP stack of the receiver to pass the data to the
Application layer as soon as possible. This datawould consist of whatever is
in the segment with the PUSH flag, along with any other data the receiving
TCP has collected and buffered for the receiving process. It isuseful for an
interactive application for example. When a client sends a command to a
server, the client expects its command to be processed rather than to remain
in the TCP buffer waiting for additional data.

RST

The“Reset” flag informs the other side that a connection problem has
occurred. In general, TCP sends a RST after handling a segment that doesn't
appear correct for the referenced connection (connection specified by the
quadruplet: source IP address, destination IP address, source port, and
destination port).

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

SYN

The SYN flag is sent in segments that initiate a connection in order to
synchronize the Initial Sequence Numbers each side is starting with. The
SYN flag appearsin thefirst two packets of a connection. Suppose a
communication is about to be established between hosts A and B, and that A
isthe“caller”. Toinitiate the connection, A sends a SY N packet containing
an Initial Sequence Number (ISN) and in which the only flag setisSYN. B
then responds with a SYN/ACK packet (in which both SYN and ACK are set)
informing A of itsown 1SN, and acknowledging A’sISN. These arethefirst
two steps of the “Three Way Handshake” that needs to be completed before
any data is exchange with TCP. The third and last step that completes the
Three Way Handshake is host A sending an ACK to host B in order to
acknowledge the ISN of B.

FIN

The sender of aFIN flag indicatesit has finished transmitting data. A
connection typically terminates after both sides have sent a FIN and have
acknowledged the reception of the FIN coming from the other side.

2.3.13TCP Reserved

As specified by RFC 793, the TCP header contains a 6-bit field reserved for
future use. RFC 3168[14] now describes how the last two bits of thisfield
can be used for control of congestion (Explicit Congestion Natification). The
two special hits are referred to as “ Congestion Window Reduced” (CWR) and
ECN-Echo (ECE) respectively. They are set by the endpoints of aconnection
to signify that the endpoints are ECN capable. As proposed by RFC 3168, it
is during the TCP connection set-up phase that the source and destination
informs one another about their desire and/or capability to participatein
Explicit Congestion Notification (ECN). The expected behaviour when both
parties support the ECN capability is the following: the initiator of the
connection turns on the ECN and CWR flagsin the SYN packet, and the
receiver responds by setting the ECN flag (but not the CWR flag) in the
SYN/ACK packet. Whilethe ECN capahility had been suggested in the padt,
it became a proposed standard only recently®, and thus several OSes do not
support this capability by default. Both queSO and nmap use the ECN bitsin
one of their tests (the one that sends a SYN packet to an open port). While
queSO’ s usage complies with the RFC, nmap’s does not. In either case, the
technique is useful for recognising some OSes.

® The issue date of the proposed standard RFC 3168 is September 2001. The ECN
mechanism was introduced in RFC 2481 (1999) under the experimental status.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 13

2.3.14 TCP Window

The TCP “Window” field is used to advertise how many additiona bytes of
data the sender of the packet is prepared to accept. This “receive window
space’ can be thought as the currently available buffer size. Throughout the
lifetime of the connection, each endpoint informs the other side of its current
value. Thevalueisvery likely to change during the connection as dataiis
received. The default values of socket buffer size available at the beginning
of a connection widely differ between implementations. Older Berkeley-
derived implementations would set a default value to 4KB, but newer systems
use larger values (up to 64KB). These default values can be seenin SYN and
SYN/ACK packets and are widely used in fingerprinting techniques, whether
they are active or passive. For some OSes, the value in these packetsis a
multiple of the advertised Maximum Segment Size (MSS) found in the TCP
options (see section 2.3.15).

2.3.15 TCP Options

14

While IP options are rarely used, TCP options are seen quite frequently. The
space they occupy at the end of the TCP header is of variable length. When
there isno TCP option, the TCP header is exactly 20-byte long. The length of
each option isamultiple of 8 bits (1 byte), and some are aslong as 10 bytes.
Not all OSes support the same TCP options, nor do they advertise them in the
same order. Moreover, the values these options take may differ depending on
the operating system. Depending on their purposes and definitions, some
options must only be used with special segments, for example when the SYN
flagis set.

Passive OS detection tools often look at options set in a SYN packet, while
most active tools ook at those set in a SYN/ACK packet in response to their
stimulus. The question “What options are supported?’ is best answered in the
latter case. Thisis because some OS support alot of options, but ask for few.
Therule of thumb is that when a host is queried with a set of options, it
usually shows support of the optionsit can handle by setting them in the
reply. We describe below some commonly used TCP options.

Maximum Segment Size (MSS)

TCP uses the “Maximum Segment Size” (MSS) option to inform the other
side of the Maximum Transfer Unit (MTU) on hisside. Basically, when
initiating the connection, both ends will announce the maximum IP datagram
size that can pass through the link layer they are connected to, without being
fragmented. If connected to an Ethernet cable for instance, the MTU is 1500.
Table 1, borrowed from TCP/IP Illustrated [17], provides alist of typical
underlying technol ogies with the corresponding MTU.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Table 1. Typical Maximum Transmission Units (MTUs)

Networ k MTU (bytes)
Hyperchannel 65535
16 Mbits/sec token ring (IBM) 17914
4 Mbits/sec token ring (IEEE 4464
802.5)
FDDI 4352
Ethernet 1500
|EEE 802.3/802.2 1492
X.25 576
Point-to-Point (low delay) 296

The MSSisannounced in SYN and SYN/ACK packets, and should only bee
seeninthose. The MSSisthe largest data segment that can be carried in the
IP datagram. It is equal to the MTU minus the length of the IP and TCP
headers. Operating systemswill typically announce aMSS equal to the MTU
minus 40 (MTU — 20 bytes of IP header — 20 bytes of TCP header), no matter
how many options are being advertised.

While the M SS very much depends on the underlying technology to which a
host is connected, some OSes calculate the value in peculiar ways. For
instance nmap uses the fact that when queried with avery low MSSvauein a
SY N packet, old Linux kernels would respond by echoing the value in their
SYN/ACK instead of stating the actual MSS possible at their end. During
this study, we observed other particular behaviours. OpenBSD versions 2.5-
2.7 for instance advertise a shorter MSSin a SYN/ACK segment containing
the TCP Timestamp option. Thisis because at this point of the connection
set-up, these systems are aware that the TCP timestamp option will be used
throughout the session, and will consume space in the TCP headers of
subsequent segments’. OpenBSD version 2.8 and above till take into
account the space needed for options when calculating the MSS, but advertise
avalue equalsto MTU-40 whether the segment isa SYN or a SYN/ACK.
Another OS, QNX RTP 6.0, also demonstrates a particular MSS setting. The
value it advertisesin both SYN and SYN/ACK segmentsis equal to MTU-41.
Thiswas fixed in later QNX versions.

No Operation (NOP)

The No Operation (NOP) TCP option is used to provide padding around other
options, for example, to align the beginning of the next option on a 32-hit
word boundary. Unlike the MSS, the NOP option may appear in any TCP
segment. The use of this option is not mandatory, and it is explicitly

" See implementation details from source code of OpenBSD 25-2.7 file

/netinet/tcp_input.c.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 15

16

specified in RFC 793[18] that the receiver must be prepared to process
options even if they do not begin on a 32-bit word boundary. Operating
systems tend to use it differently. When looking at the order in which the
TCP options appear, nmap takes into account the location of the NOPs,

End of Option List (EOL)

Asits name indicates, The End of Option List (EOL) signifies that the end of
the TCP options have been reached (i.e. there are no more TCP options to
follow). Notethat thelist of options may be shorter than the Data Offset field
might imply. Thisis because the Data Offset field is given in 32-bit words,
but the length of the TCP options might not be a multiple of 32 bits. The
EOL option needs only to be used if the end of the options would not
otherwise coincide with the end of the TCP header. Some OSes will use NOP
between options instead of using the EOL at the end. Macintosh systems are
among the rare OSes to use the EOL option. Nmap was the first OS detection
tool to check for the EOL TCP option. Ettercap, and since recently pOf,
perform that check also.

Window Scale (WSCALE)

The Window field described earlier isonly 16 bitslong. Thislimitsthe
maximum window size to 65535 bytes. The “Window Scale” option was
defined to allow a host to advertise a buffer space bigger than 65535 bytes.
Asdescribed in RFC 1323, the option has two purposes: (1) indicate that the
TCPis prepared to both send and receive window scaling, and (2)
communicate a scale factor to be applied to its receive window. To enable
window scaling in either direction, both sides must send Window Scale
optionsin their SYN segments. Like the MSS, the WSCALE option should
only appear in SYN and SYN/ACK packets. It should not be seenina
SYN/ACK packet if it was not first advertised in the SYN packet.

The Window Scale value gives the number of bits by which the Window size
field's value should be shitted when expressed in binary. For example,
suppose two Operating Systems advertise a Window of 65535
(11121111211211211 in binary), but one had set a Window Scale value of 1in
its SYN segment, and the other a Window Scale value of 2. The former is
announcing a buffer space of 65535x2" (11111111111111110 in binary), and
the latter is announcing 65535x22 (111111111111111100 in binary). The
Window Scale option is relatively new compared to the MSS option, and not
al OSesimplement it. Some OS detection tools, such as nmap, check to see
whether or not the option is supported. The pOf tool isthe only one we have
seen that also considers the value of the Window Scale option.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Timestamp

Also described in RFC 1323, isthe Timestamp option. The purpose of this
option isto estimate the Round Trip Time (RTT) in order to identify changes
in latency, and thus identify situations that may require acknowledgment
timer adjustments. The Timestamps option hastwo fields. Thefirst fieldis
the Timestamp Value (TSval), which contains the current value of the
timestamp clock of the TCP sending the option. The second field isthe
Timestamp Echo Reply field (TSecr) andis only valid if the ACK hitissetin
the TCP header. When valid, it echoes a TSval received from the remote
TCP. The TSecr value will generally be from the most recent Timestamp
option that was received. When TSecr is not valid, its value must be zero.
Unlike the MSS and WSCALE options, the timestamp option istypically
used throughout the TCP session.

TheTSval is obtained from a (virtud) clock called the "timestamp clock™. Its
value must be at |east approximately proportional to real time. The rate at
which each system increments the clock varies between OSes. For example
most BSD systems update the clock once every 500ms, while Linux systems
update it more frequently (once every 10ms, or even once every 1ms for some
kernels).

Another example of differences among OSes can be seen in Windows
2000/Me/XP. The update rateis once every 100ms, but they use the
Timestamp option in a peculiar way. They support the option but won't
advertise it when initiating a connection (i.e., when sending a segment
containing a SYN bit and no ACK bit). When probed by a SYN packet
having the Timestamp option set, they will acknowledge the option in their
SYN/ACK, but with aTSval equal to 0. They wait until the Three Way
Handshake is completed before sending their first nonzero TSval.

Nmap uses these existing differences regarding the TSval settings when
guessing the operating system of atarget. To do so, the tool makes multiple
connectionsto its target and computes the update rate based on the el apsed
time versus the TSval increment.

It is aso possibleto gain other pieces of information about a system by
looking at the TSval. Aspointedin[19], the TSval is, for some OSes, tied to
the system uptime. For such systems, once the update rate of their timestamp
clock is known, one can deduce the last time the computers have been
rebooted by capturing a packet having the TCP Timestamp option set. While
detecting the system uptime has nothing to do with OS detection, it can be
useful information when monitoring a network.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 17

18

Selective Acknowledgments Permitted (SackOK) and
Selective Acknowledgment Data (Sack)

The concept of selective acknowledgment is described in RFC 2018[20]. Its
purposeisto allow areceiver to acknowledge non-consecutive data. When
this mechanism is not used, a TCP receiver can only acknowledge the packets
up to the Sequence Number immediately before a missing packet. This
means for example that if 100 packets are received but the second packet is
missing, the receiver can only acknowledge the receipt of the data contained
in the 1st packet, so the sender would have to retransmit packets 2 through
100. By using Selective Acknowledgment, the receiver can acknowledge the
receipt of packet one and all packets between 3 and 100. Thus, the sender
only needs to retransmit packet 2. There are two options for the Selective
Acknowledgment mechanism. The first is an enabling option, Selective
Acknowledgment Permitted (SackOK), which may be sent in a SYN segment
to indicate that the mechanism can be used once the connection is established.
SackOK must be included in the TCP optionsin both the SYN and
SYN/ACK packets of the Three Way Handshake, or it cannot be used. The
other is the Selective Acknowledgment (Sack) option itself, which may be
sent over an established connection once permitted by the SackOK
notifications. Thisoption is of variable length and gives alist of pairs of
Sequence Numbers, where each pair defines arange of numbered bytes that
are being acknowledged.

Selective Acknowledgment is only supported by afew Operating Systems

(generaly the most recent ones). Some OS detection tools, such as nmap or
pOf, check whether or not the option is supported.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

3. Passives Tests Developed

3.1

The network security research team at CRC has devel oped novel techniques for
passive operating system discovery. Some of the techniques were inspired by active
tools and adapted to be conducted passively on regular traffic. We have devel oped
about a dozen tests that analyse headers of packets captured from a network. They are
passive and thus they do not send any probe packets. Moreover, they only analyse
headers at the link, network, and transport layer, thus the approach aso has the
advantage of remaining applicable whether the application layer is encrypted or not.

Our tests are conducted on the headers of various types of protocol: ARP, IP, ICMP,
UDP and TCP. We have devel oped a prototype based on these techniques and built a
database containing the fingerprints of close to 200 versions of operating system.

The passive techniques we use go beyond individual packet analysis. Stimulus and
response packets are passively collected, identified, paired, and analysed together to
alow for more accuracy. While matching corresponding stimulus and responseis
easily done with our approach, it seems to be overlooked by current avail able passive
tools. Our method also alows for analysing samples of packets transmitted by a
computer (typically to observe how a certain header field evolves). We define three
categories of tests as described below.

Categories of Passive Tests

Through out this document, the term test refers to a series of specific criteriathat are
used to examine a given packet or group of packets. Below are the categories of tests
we define.

3.1.1 Singleton

Testsin this category are conducted on a single packet (asingleton). They
typically look for default values of header fieldsin order to identify the OS of
the sender of the packet.

The general algorithm to perform a Sngleton test is asfollows:

1. Monitor traffic, listening for packets satisfying a certain filter;

2. Compute the signature once a packet is captured;

3. Obtain the corresponding OS (or group of OSes) from the signature
database.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 19

3.1.2 Sample

This second category of test requires capturing a sample of packets a host
sendsout. A Sampletest typically analyses how acertain field evolves as
consecutive packets are being transmitted. Any of our Sample tests requires
two parameters:. (1) the number of packets composing the sample, and (2) the
maximum delay (in millisecond) that can separate the last packet from the
first.

The general agorithmisthiscaseis:
1. Monitor traffic, listening for packets satisfying a certain filter;

2. Hold in memory captured packets by Source IP address until asampleis
complete.

3. Compute the signature on the sample;

4. Obtain the corresponding OS (or group of OSes) from the signature
database.

Asit will be seen shortly, the tests we have defined in this category may
produce inaccurate results for several reasons, in particular if packets of a
given sequence are missed, or if amachine under observation reboots during
the sampling process. The maximum delay restriction is an attempt to limit
the chances of getting samples that will produce inaccurate results.

3.1.3 Stimulus-Response

20

This category is required because some packets are “answers’ to other
previoudly transmitted packets. The settings in a response packet may depend
on the request that was made. For example, the TCP options of a SYN/ACK
packet are partly dependent on the TCP options of the SYN packet. It isthe
OS of the “responder” that such atest triesto identify (e.g. the sender of the
SYN/ACK packet in the previous example). Note that this category of tests
includes cases where the response from the target to a certain stimulusisto
remain quiet. In these particular cases however, it is not always easy to
passively determine whether the target system does not respond to such
stimuli or whether it is ssimply down or even whether the response was missed
because of asymmetric routing.

The general algorithm of a Simulus-Response test is as follows:

1. Monitor traffic, listening for packets satisfying either the stimulus or the
response filter;

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

If the captured packet isa stimulus, hold it in memory by destination IP
address and go back to monitoring. If the packet is aresponse, search
alocated memory for the corresponding stimulus and then go to step 3;

Compute the signature based on the stimulus-response pair;

Obtain the corresponding OS (or group of OSes) from the signature
database to determine the OS of the sender of the response.

Stimulus-Response tests have a parameter that defines the maximum delay (in
millisecond) an unanswered stimulus can remain in memory. Once the
timeout is passed, unanswered stimuli may be processed depending on the
particular test.

3.2 Tests Descriptions

3.2.1 PassiveTest_TCP_SYN (Singleton)

Thistest is conducted on the first packet that establishes a TCP connection
(i.e.aSYN packet). It wasinspired by pOf’svl, and we have added a check
for al TCP options, taking their order into account. The SY N test of pOf v2
has evolved to a so take the order of TCP optionsinto account.

Fields under analysis are found in the IP and TCP headers. The criteriawe
define are:

1

2.

Isthe IP Don't Fragment bit set in the IP header? (“Y” or “N”)

What isthe value of the IP Time To Live field? (one-byte integer
expressed in decimal format)

What isthe value of the TCP Window size field? (two-byte integer
expressed in decimal format, or n(MSS) if Window sizeis "n" timesthe
advertised MSS)

What TCP ECN bits, if any, are set? (*C"=CWR, “E”=Ecn-Echo)

What TCP options are advertised, and in what order do they appear?
(“M”=Maximum Segment Size, “N”= No-operation, “T"= Timestamp,
“W”=Window Scale, “S’= SackOK, “L”=End Of List, “C.New"=
Connection Counts New®). We aso capture the value for the Maximum
Segment Size and Window Scale options using the format

® Connection Counts New (CC.NEW) is non-standard. It was defined in RFC 1644 in
1994, T/TCP -- TCP Extensions for Transactions Functional Specification, which has
the RFC experimental status. This option is supported by old FreeBSD versions.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 21

“@DecimaVaue'. Similarly, if thetsval value of the timestamp option
is zero, we denote this by T@0.

Signature example:
DF=Y;TTL=128;WIN=44(MSS); TCP_Ecn=;TCPopts=M @1460NNS;

Note that the TTL value decrements by one each time a packet passes through
arouter and the value of the Maximum Segment Size option depends not only
on the OS but also onthe MTU at the target end-point. The signaturesin the
database contain TTL and MSS values for loca hosts sharing an Ethernet
link. When the prototype program attempts to identify the OS of aremote
host based on those signatures, specia look-up algorithms are called upon to
try to identify the most plausible matches for the TTL and the MSS.

The TCP Window size field and the value of the Window Scale TCP option
of some OSes may vary depending on the application involved. As described
later in section 4.2.1, the signatures were produced using a limited number of
application clients. The signatures provided in Table 12 of Annex A are
therefore not exhaustive. It can be observed from Table 12 that the order in
which the TCP options are set hel ps distinguishing between the different
operating systems family, and that the Window Size hel ps discriminate
between versions among a given family.

3.2.2 PassiveTest ARP_Request (Singleton)

22

Thistest is of type Sngleton; the packet it listens for isan ARP request. It
was devel oped based on Address Resolution Protocol (ARP) traffic observed
within the network testbed. As discussed in section 2.3.5, the content of the
Target Hardware address of an ARP request varies with operating systems.
Most systems initialise it with 0x000000000000; others such as Solaris and
the original Mac OSfill it with Oxffffffffffff. Some versions of FreeBSD
even fail toinitiaise thefield and so it contains alocated memory garbage.

Based on traffic observed on a network separate from the testbed, we have
planned for two other categories of behaviours: systems that initialise the
Target Hardware address with the value of their own Source Hardware
Address, and systems that initialise it with the Destination address included
in the Ethernet header when sending a directed ARP request (i.e. not
broadcasted). This happensfor systems that refresh their cache by asking the
remote machineif it's still using that IP.

Note that because ARP is confined to the broadcasting environment on which
the hosts are connected, the monitor will only see the ARP traffic from hosts
on the same physical network.

The onefield examined in thistest appearsin the ARP header. The criterion
for differentiating between operating systems is the following:

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

1. What isthe value of the Target Hardware address field?
(“0x000000000000", “Oxffffffffffff”, “uninitialized”,
“SourceHardwareAddress”, “ EthernetDestinationAddress’)

Signature example: TargetHardwareAddress=0xffffffffffff;

The signatures collected appear in Table 13 of Annex A. It can be observed
that FreeBSD 5.0 and 5.1 can easily be detected. Mac OS prior to Mac OS X
and Solaris systems can a so be distinguished from the other OS families
based on thistest.

3.2.3 PassiveTest_TCP_ISN (Sample)

Thistest tries to categorize the target based on Initial Sequence Numbers
(ISNs) generation. Recall that the ISNs are exchanged during the TCP
connection set-up; they correspond to the Sequence Numbers found in the
SYN and SYN/ACK packets (see section 2.3.10 and 2.3.12).

Categorizing the ISNs generation requires the monitor to collect a sample of
ISNs generated by thetarget. The ISNs sampled are then analysed to
determine if and how they are related to one another. There may be
uncertainties in the outcome of such atest for several reasons. As described
below, some are related to the sampling technique, while others are related to
the difficulty of defining robust classification algorithms.

First, depending on the network conditions and its configuration, there can be
cases where the ISNs sampled were not generated one after the other. For
example, the sample may contain duplicate ISNs when TCP retransmits
packets due to packet loss during network congestion, or the order of the
ISNs in the sample may differ from the order in which they were generated if
packets arrive out of order to the monitor capturing the packets. It can also be
that, due to its location, the monitor does not see al traffic emerging from the
target. For example, suppose the network configuration depicted in Figure 1,
where the cloud represent a switching environment that separates the shared
mediato which hosts A and B are connected from the one shared by hosts C
and D. Suppose the system under observation (host A) is communicating
with hosts B and C. The monitor (host D) will only see the communication
between A and C, but not the one between A and B. Thus, in this example,
the monitor will missany 1SN exchanged between A and B.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 23

‘ B Monitor

Figure 1. Limitation due to the position of the monitor when doing sequencing analysis

The algorithms used to analyse how the ISNs are generated may also be
troublesome. It isnot always easy to determine whether or not numbers are
randomly generated, nor isit obvious how to distinguish among random
number generators.

Thetest PassiveTest TCP_ISN isbased on nmap’'s TSeq test. To construct a
sample, nmap initiates six consecutive connections with the target, and
captures the SYN/ACK packets it receivesin response. If at least 4 responses
are received and that the delay between the probes’ is no longer than one
second, nmap considers the sample as being suitable for its calculations.

nmap classifies ISNs into several categories:

« Constant ISNs, i.e. OS dways starts a connection using the same ISN
(e.g. Commodore 64);

« ISNsthat are multiple of 64000 (e.g. old UNIX and MAC OS prior to OS
9);

« ISNsthat are multiple of 800 (e.g. IBM 0S/2);
« ISNsincremented using random positive increments (most OSes);
« ISNsrandomly generated (e.g. OpenBSD 2.9 or higher);

« Timedependent ISNs, i.e. ISN isincremented by a small fixed amount
each time period (e.g. Windows 95/98/NT);

The algorithms nmap uses to classify the target into these different categories
are based on computation of standard deviation and greatest common divisor,

® nmap has an option that allows the user to set the delay between the transmission of
each stimulus. The longer the delay, the stealthier the tool is. However, in cases where
the location of the system running nmap prevents it from seeing all of its target's traffic,
a longer delay increases the likelihood of getting non-consecutive ISNs. This is
because the target can communicate with other hosts during the sampling period.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

made on the set of the differences between the Sequence Numbers (i.e.

{ SeqNb(i+1)-SegNb(i)}, where SeqNb(i) is the Sequence Number of the ™
packet sampled). The classification algorithms are simplistic. For example,
if at least one of these differencesis greater than 50 million, the sampleis
said to come from atrue random generator. Similarly, nmap distinguishes
between the class random incremental and the class time dependent based on
the standard deviation value (if it is greater than a certain threshold, the
sample fallsinto the random incremental class rather than the time dependent
class without any consideration to the elapsed time). While definitely not
infallible, nmap’ s classification obtained for several tested targets seem to be
consistent from sample to sample. For simplicity, we adopted the same
agorithms.

The main difference between our test and nmap’ stest is in the choice of
packets composing the sample. In our case, we monitor both SYN and
SYN/ACK packets sent by the target, no matter what the destination address
is. Nmap captures only the SYN/ACK packets the target sendsin response to
itsstimuli. Thus, for our test we make the assumption that the ISNsfor SYN
and SYN/ACK packets come from the same number generator, no matter
what the OS is.

We impose a somewhat more restrictive condition on the sample: while the
minimum number of packetsistill four, all packets must arrive within one
second of thefirst packet. Actualy, the “four packets’, and “one second”
(1000ms) are default values of user-defined parameters in the prototype
program. These default values were chosen based on observations made
during the analysis of two traffic traces (section 5) containing web traffic.
First, it appeared to be common for a host to initiate two to five TCP sessions
within one second. Thisis because many hosts were using Netscape as their
Browser, which uses separate TCP sessions to download a page containing
several components (e.g. text, images). Secondly, these conditions are so
restrictive that it is unlikely that other unseen TCP connections can be
initiated in between, no matter where the monitor islocated. Notethat if the
position of the monitor allows it to see all traffic of all hosts connected to the
network, then the “within one second” restriction on the sampleisfutile.
However, keeping atime restriction can prevent getting a sample with
packets sent before and after a machine reboots.

The singlefield analysed in thistest isfound in the TCP header. The criteria
defined are:

1. What class best describes the ISNs sampled? (“ C"= Constant 1SN,
“64K” = |SNs that are multiple of 64000, “i800"= ISNs that are multiple
of 800, “RI”= 1SNsincremented using random positive increments,
“TR”= ISNsrandomly generated, “TD” = Time dependent ISNs)

2. WhentheClassis“C”, what isthe value of the ISNs? (four-byte integer
expressed in decimal)

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 25

3. WhentheClassis“TD” or “RI”, what is the greater common divisor of
the 1SN differences? (four-byte integer expressed in decimal)

4. WhentheClassis“TD” or “RI”, what is the value of the standard
deviation of the ISN differences? (four-byte integer expressed in decimal)

Signature examples: ISNClass=TD;gcd=1;std=50;

Note that asin the case of nmap’s approach, the greater common divisor
(ged) and the standard deviation (std) are defined in the signature database in
terms of lower and upper bound values. Thisis because the samples contain
so few packets that these measures may vary alot between samples. Thus, on
each sample we compute the greater common divisor and the standard
deviation, but when we look for a match in the database, we try to find one
for which the lower and upper bounds are satisfied. We describe in section
4.2.2 how we estimated those upper and lower bounds.

The collected signatures appear in Table 14 of Annex A. Thetesting of these
signatures on real user traffic indicates that the range delimited by the lower
and upper bounds of the standard deviation is not wide enough to capture all
possibilities. Note however that even if a perfect match is not found, the
ISNClass field of the signature does help distinguishing between operating
system families.

3.2.4 PassiveTest _IP_ID (Sample)

26

Thistest tries to categorize the target based on its IP ID number generation
(seesection 2.3.4). It isbased on nmap’s TSeq test. A sample of six packets
received within one second is inspected according to amodified version of
nmap’ s classification algorithms.

Thistest presents the same reliability problems described for the
PassiveTest_ TCP_ISN test due to the sampling process and analyzing
agorithms.

While nmap only looks at the IP ID of SYN/ACK packets it receives from the
target in response to its stimuli, we inspect all IP packets (not only those
carrying TCP segments). We do this because most of the systems keep track
of the IP ID value of the last IP datagram they have sent in order to produce
the next value. Said differently, the IP 1Ds of two consecutive |P datagram
sent by ahost are very likely to be related to one another. Therefore, if we
only capture the value for some specia kinds of datagram, we would miss
some sequenced P IDs in between.

However, since we capture all 1P traffic, we had to revise the nmap
classification given below. For some Linux systems for instance, the IPID is
incremental within a TCP session, but starts at a random number each time a
new TCP session begins.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

The IP ID classes defined by nmap are:

« IDsincremented by one each time (Class|1)

« IDsincremented by 256 each time (Class BI)*

« IDsincremented using random positive increments (Class RPI)
« IDscoming from arandom distribution (Class RD)

« Repeatable IDs (Class C)

« Zeroed out IDs (Class Z)

The purpose of the class Z is to catch the few systems that zero out the IP ID
intheir SYN/ACK packets. Linux kernels 2.4.4to0 2.4.21(at least) fall into
this category. Infact, Linux 2.4.xx routingly set the IPID field to 0x00 unless
fragmentation is permitted. The packet types with IPID set to zero depend on
the kernels. We observed that Linux 2.4.0-2.4.3 zero out the IPID for all
packets having the DF hit set to 1 and the MF bit set to O, while Linux 2.4.4-
2.4.21 zero out the value for a subset of these packets, in particular, for ICMP
Echo Requests (and ICMP Echo Repliesin the Linux 2.4.4 case), UDP
carrying DNS messages, TCP SYN/ACK, TCP RST/ACK, and some TCP
ACK packets responding to FIN/ACK packets.

For Linux kernels 2.4.4 and above, when the IP ID is nonzero, it is session
dependant. This means that several counters are running at the same time,
one per (source, destination, protocol) triple™. Each counter isinitialised
randomly.

As described below, we have defined a subtest, of type Sngleton, to capture
the zeroing behaviour. Packets with IPID equalled to zero are filtered out of
the samples passed to PassiveTest IP_ID. We have removed the Class Z
from our version of the test based on samples, and added four new categories:

0«B|” stands for “broken increment”. This 256-incremental behaviour is seen on some
little endian platforms when the operating system “forgets’ to reorder the bytes. See
section 2.3.4 for more details.

1 When the protocol is TCP, the source and destination are defined by the pairs (source
IP address, source port) and (destination IP address, destination port) respectively.
However, when the protocol is UDP, the source and destination are smply the source
IP address and the destination |P address (i.e. no matter what the ports are). Moreover,
in the case of UDP, it appears that when the IP More Fragment bit is set to 0, the
destination address does not influence the IP ID. This means these versions of Linux
will have a globa IP ID increment if they communicate using small UDP packets with
different destination hosts. Finaly, in the case of ICMP, the source and destination are
defined by the source and destination address solely.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 27

28

« IDsare session dependent, but incremented by one within a given session,
(Class-SD)

« IDsareincremented by one globally, i.e. session independent (Class |-
Sl).

« IDsare session dependent, but incremented by 256 within a given
sesson,
(Class BI-SD)

« IDsareincremented by 256 globally, i.e. session independent (Class BI-
Sl).

The Class | isthereby a subset of both Classes I-SD and I-SI. When a sample
contains packets showing an incremental behaviour (incremented by one) but
al packets are within the same (source, destination, protocol) triple, then one
cannot distinguish between 1-SD and I-SI and the sample will simply fall into
Class|. Same remark appliesto ClassesBl, BI-SD, and BI-Sl.

Thefields examined are found in the |P header. The criteriawe define are:

1. What Class best describes the IDs sampled? (1, Bl, RPI, RD, C, Z, I-SD,
[-SI, BI-SD, BI-Sl)

2. What protocol over IP do the packets carry? (The integer value of the IP
Protocol field if al packets carry the same protocol, -1 otherwise)

Signature example: IPIDClass=I-SI;Protocol=-1,

TheI-SD and BI-SD categories were defined based on Linux’s behaviours. It
is only once the prototype code was written that we realize that Mac OS prior
to Mac OS X and Solaris systems also maintain different counters, but in
these cases it is one counter per destination address (independently from the
protocol or the port numbers). Because of the way the code is written, the
results produced for these systems may appear contradictory. For example, a
TCP packets sample will produce a signature I-SD if it contains
communications with at least two different destination | P addresses, but may
aso produce I-Sl if this sample contains communication with asingle
interlocutor, but involving different port numbers. At the time of writing the
signature database contains entries with both 1-SD and I-Sl signatures for
these Mac OS and Solaris systems.

To complement this test, we have added two subtests:

PassiveTest Echo |P_ID, and PassiveTest NULL |P_ID.
PassiveTest Echo IP_ID is of type Simulus-Response and examines whether
the IP ID of a Response is echoed from the IP ID of the stimulus.
PassiveTest NULL _IP_ID isof type Sngleton and looks for anull IP ID (i.e.
IP 1D with azero value). These two subtests are useful in pinpointing certain

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

versions of OSes and are also useful for removal from the sampling process
of PassiveTest_|IP_ID the packets with an echoed or null IP ID.

The criteriawe define for the PassiveTest NULL _IP_ID are:
1. IsthelPID value egqual to zero? (Y or N)

2. What protocol over IP does the packet carry? (The integer value of the IP
Protocol field)

3. What “purpose” does the packet serve? (If the protocol over IPisICMP,
the “purpose” is described using the ICMP type and Code fields; if the
protocol is TCP, the “ purpose” is described by the TCP flags; if the
protocol is UDP, we tag the purpose as “none”, in other cases the purpose
is described as“UNKNOWN?”).

Signature Example: NulllPID=Y ;Protocol=1; Packet Type=0:0;
The criteriawe define for the PassiveTest_Echo |P_ID are:

1. IsthelPID valueintheresponse identica to the valuein the simulus? (Y
or N)

2. What protocol over IP does the response carry? (The integer value of the
IP Protocol field)

3. What “purpose” does the response serve? (If the protocol over IPis
ICMP, the “purpose” is described using the ICMP type and Codefields;
if the protocol is TCP, the “purpose” is described by the TCP flags; if the
protocol is UDP, we tag the purpose as “none”, in other cases the purpose
is described as“UNKNOWN?”).

4. What protocol over IP doesthe stimulus carry? (The integer value of the
IP Protocol field)

5. What “purpose” does the stimulus serve? (refer to criterion 3.).

Signature Example:
IPIDEcho=Y ;Protocol=1;PacketType=0:0;Stimul usProcol ol =1; Stimul usPack
etType=8:0;

The signatures observed for IP ID settings of the different OSes appear in
Table 15, Table 16 and Table 17 of Annex A. Table 15 contains the result of
subtest PassiveTest ECHOED IP_ID. To reduce the size of thetable, only
the echoed cases have been reported in thistable. Table 16 containsthe
results of subtest PassiveTest NULL_IP_ID for Linux systems (other OSes
do not zero out the IPID). There are Linux versions with two signatures for
the same type of packet, one signature with NulllPID=Y and the other with
NulllPID=N. Refer for instance to the signatures for Linux 2.0.x- 2.2.x. This

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 29

istypical of Linux versionsthat have an incremental IP ID that starts at zero
onreboot. Therefore, in most casesthe IP ID is nonzero, and will be equal to
zero only in thefirst packet transmitted after reboot. Linux 2.4.4-2.4.21
kernels have two signatures for a TCP ACK segment. These systems
sometimes send anull IPID inaTCP ACK segment in responseto a
FIN/ACK packet. Table 17 contains the result of PassiveTest_IP_ID that
analyze samples. The examination of the IP ID field is particularly useful for
identifying Linux systems and distinguishing between the different kernel
versions of thisfamily. Thisis because the Linux implementation of the IP
ID has distinctively changed from version to version. Moreover, certain
Linux distribution can be recognized. In particular, it appears that S.u.S.E.
digtributions starting with S.u.S.E. 8.1 (kernel 2.4.19-4GB) do not zero out
theIP ID.

3.2.5 PassiveTest TCP_TS (Sample)

Thistest tries to categorize the Timestamp clock update rate and is a so based
on nmap’s TSeq test.

As before, the main difference between thistest and nmap’stest isin the
packets composing the sample. Nmap’s samples are composed of SYN/ACK
packets responding to its stimuli (SYN packets having the TCP timestamp
option set). Nmap'stargetsthat do not support this option will fall into the
“Timestamp Unsupported” category. In contrast, we capture all SYN and
SYN/ACK packets having the TCP timestamp option set. Therefore, the
samples we get come from targets that do support thisoption. The nmap’s
“Timestamp Unsupported” class does not apply here and thus we do not
defineit. Note however that thisinformation can be gained with another test
of ours (PassiveTest TCP_SYNACK, see section 3.2.8). Also notethat alot
of systems do support this option but won't advertiseit in their SYN packets.
Thus, asample containing only SYN/ACK packets may indicates that the
target isfrom this category.

The Timestamp classes defined by nmap are:

« Timestamp clocks updated twice per second (Class 2HZ)

« Timestamp clocks updated 100 times per second (Class 100HZ)

« Timestamp clocks updated 1000 times per second (Class 1000HZ)

« Timestamp option unsupported by the OS (Class UNSUPPORTED)
« Timestamp option set but having a value of zero (Class Z)

We have added another category:

« Timestamp clocks updated 500 times per second (Class 500HZ)

30 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Thisrate was observed for Linux kernels distributed by Red Hat version 8
(i.e. Red Hat modified kernelsfrom 2.4.18-14 to at least 2.4.18-18.8.0).

While the Timestamp option may appear in any TCP packet, we chose to
monitor only SYN and SYN/ACK packets in order to pinpointing certain OS
versions that send a timestamp value of zero during the three-way handshake.
For instance Windows 2000 systems wait until the connection is established
before sending nonzero values. Thus, using our sampling method, a sample
coming from a machine running windows 2000 will have values of zeroin al
its packets (Class Z). Moreover, Windows 2000 is from the category that
does not advertise the option in their SYN packets, thus the sample will
contain only SYN/ACK packets. NetBSD has adopted the same behaviour
sincetherelease 1.6. In contrast with Windows, these systems advertise the
timestamp option in SYN packets as well.

In contrast with the tests PassiveTest TCP_ISN and PassiveTest IP_ID, the
accuracy of thetest is not impaired if the monitor misses packets during the
sampling process. The restrictions on the sample can therefore be set more
loosely. However, because the timestamp clock isin some cases related to
the uptime of a machine[19], it can reset to zero when a system reboots.
Having a delay restriction can prevent getting a sample with packets sent
before and after a machine reboots.

Thefield under examination isfound in the TCP header. The criterion we
defineis:

1. What class best describes the timestamp clock update rate? (Z, 2HZ,
100HZ, 500HZ, 1000HZ)

Signature example: TSClass=100HZ;

The signatures collected for this test appear in Table 18 of Annex A.
Obviously, only the operating systems that support the TCP Timestamp
option are present in thistable.

The OSes that stand out the most based on thistest are the Windows systems,
recent releases of NetBSD, and Linux 2.4.18-14. The latter distinguishes
itself from the other Linux versions by incrementing the timestamp clock five
hundred times per seconds instead of one hundred times per second. This
kernel comes with the Red Hat 8 distribution. Also tested but not included in
the table was the kernel update 2.4.18-17 (also particular to Red Hat 8). This
kernel also showed the same update rate as Linux 2.4.18-14.

Another observation made during the development of thistest is that setting
the timestamp value to zero in a SY N packet (as currently done by NetBSD)
produces an undesirabl e effect if the packet is destined to a Linux system.
While Linux does support the option and normally responds favourably to it,
it will not collaborate in this particular case. This means that athough the

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 31

timestamp option is supported by both parties and was requested by the
initiator of the connection, it will not be use at all during the communication.

Assuming the practice of zeroing out the timestamp value during connection
set-up becomes so common that new operating systems are undistinguishable
based on this test, it may become necessary to remove the Class Z from this
test, and examine the update rate on all TCP packets with nonzero timestamp
valuesinstead of restricting the sampling to SYN and SYN/ACK packets.
Note that a subtest of type Singleton could be defined to observe this zeroing
behaviour in SYN and SYN/ACK packets. This subtest could be defined to
listen for all TCP SYN and SYN/ACK packets and produce a signature based
on the following criteria:

1. Isthe TCP timestamp option set? (Y or N)
2. Isthetimestamp value of this option set to zero? (Y or N)

3. What flags are set in the TCP header? (S or SA)

3.2.6 PassiveTest_ARP_Retransmit (Sample)

32

Thistest is based the proof-of-concept program called Induce-ARP described
insection 2.1. It consists in observing the number of times an unanswered
ARP Reqguest isretransmitted, and by analyzing the delays separating the
retransmissions. This situation of retransmitted ARP request happens for
instance when a host tries to contact an unused (or temporarily unreachabl€)
|P address on his subnet.

Aswith the PassiveTest ARP_Requedt, thistest can only be done on hosts
sharing the same broadcasting environment as the monitor (ARP packets are
not routed).

The sequence of unanswered ARP requests for the MAC address of a unique
IP addressis analyzed based on 4 criteria

1. How many packetsin total does the system send? (integer, this counts the
first and the retransmitted packets)

2. What isthe minimum delay between any two consecutive packets? (in
microseconds)

3. What isthe maximum delay between any two consecutive packets? (in
microseconds)

4. What class best describes the delays between retransmission of packets?

(“C"= Constant, “LI"= Linear Increment, “OI” = Other than linear
Increment)

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Signature example:
NbOfPackets=6;DelayMin=1000000; Del ayM ax=1000000; ARPClass=C;

Section 4.2.6 describes the signature collection process used to identify in
which category each operating system falls. The signatures are provided in
Table 19 of Annex A. While the network stack implementation of Linux
systems resembles in many aspects to the implementation in BSD families,
thistest helps recognizing the Linux systems from the others. It also helps
distinguishing between the different kernel versions of Linux. Mac OS (prior
to version X) and Sun OS can also be distinguished from the other families
easily.

A magjor difficulty with thistest is to detect whether an unanswered ARP
request is reissued because of the ARP module itself, or because a higher-
level module made several requests. The following example with Windows
systemsillustrates the problem. The ARP module of Windows machines do
not retransmit ARP request. Thus suppose a Windows machine sends one
echo request (one ping) to an unreachable |P address on its subnet, then only
one ARP request will be seen. But suppose now that the Windows machine
sends multiple consecutive ping attempts to the unreachable IP address, then
for each of these attempts the ARP module will send one ARP request. This
later case may be falsaly interpreted as being an ARP retransmission
situation. Because our test does not currently attempt to identify what
triggered the ARP module to send ARP requests, the program islikely to
produce false results.

Note also that the test does not attempt to match ARP requests with ARP
replies. This meansthat the case of an ARP request that receives an answer
may be mistaken with the case of no retransmission. To compensate, the
program only triesto find amatch if the number of identical ARP requests
seen is greater than one.

3.2.7 PassiveTest ICMP_ID_SEQ (Sample)

Thistest wasinspired by Arkin's observations regarding the ping utility of
Windows and Unix systems[7]. The ping utility isincluded with most
platforms to allow testing for TCP/IP connectivity using ICMP Echo
messages. In most cases, ping is a command-line utility, although there are
some Graphical User Interface (GUI) implementations.

Different ping implementations set the ICMP Identifier ICMP ID) and ICMP
Sequence Number (ICMP Seq) parameters differently as discussed in 2.3.7.
PassiveTest ICMP_ID_SEQ combines the two parameters together to
differentiate between OS families and versions. To the best of our
knowledge, there is currently no implementation of these techniques for
passive OS identification.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 33

To fingerprint a host, PassiveTest ICMP_ID_SEQ requires collecting a
sample of ICMP Echo Reguests sent by that host. To be suitable for
examination, the sample collected must include Echo Requests directed at a
minimum of two different destination addresses. Thisisrequired to
determine the behaviour of the ICMP ID field.

The ICMP ID and ICMP Sequence Number fields are analyzed based on 4
criteria:

1. What Class best describes how ICMP IDs are generated? ("C" for
constant, "I" for incremental, "TDI" for Time Dependent Incremental (i.e.
likely to be tied to process ID), "RD" for randomly generated)

2. What invariant characterize the ICMP ID values? (the ICMP ID value
itself if classis“C”, the greatest common divider of the increments if
classisincremental (class“l” or “TDI”), or =1 if no invariant is
identified)

3. What Class best describes how ICMP Sequence Numbers are generated?
("C" for constant, "I" for incremental, "1Global" for globally incremental)

4. What invariant characterize the ICMP Sequence Numbers? (the value of
the ICMP Sequence Number itself if classis“C”, the value of the
increment if classisincremental (class“1” or “IGloba”), or —1 if no
invariant isidentified)

Signature Example:
ICMPIDClass=C;|DInvariant=200;| CM PSeqClass=IGlobal ; Seglnvariant=10
0;

Invariants are expressed in hexadecimal values. When describing the ICMP
ID, the class“TDI” stands for Time-Dependent Incremental and indicate that
the ICMP ID increases by increments of different size. For most OSes that
fall into this category, the ICMP ID istied to the Process ID (PID) associated
with ping, and thus the increment between consecutive instances of ping will
vary according to other processesin the system. Although the gaps are not
directly related to the elapsed time between ping calls, the longer the lapse of
timeis, the more likely a number of processesin between will have been
launched. The relation between the ICMP Identifier and the PID can be
verified when the source code of ping isavailable. For FreeBSD systems for
instance, thisisfound in the ping.c file located in /usr/src/shin/ping/ and in
whichicmp_id takesits 16-bit value from getpid()& OxFFFF.

The signatures are provided in Table 27 of Annex A. Signaturesfor Mac OS
7 to 9 were produced with MacTCP Ping 2.0.2"2. Because these ol der

2 MacTCP Ping is an old, free, unsupported ping program from Apple Computer.
MacTCP Ping 2.0.2 comes with a GUI and is available for download at

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

versions of Mac OS do not come with a ping utility by default, users are
likely to install adifferent utility tool. In particular, a different behaviour was
observed using another ping utility named Mac TCP Watcher 2.0". With
TCP Watcher, anew ICMP ID and anew ICMP Seq are generated each time
the application isopened. The ICMP ID isfixed for each instance of the
application (i.e. onceit is opened), while the ICMP Seq is globally
incremented (independent from the destination addresses).

The database does not currently include signatures for the Novell systems,
except for Novell 4.11 that had an easily identifiable behaviour. While the
ICMP Seqiseasy to predict for Novell 5 and 6, the behaviour of the ICMP ID
isnot well understood. The ping utility of Novell NetWare systems come
with a GUI from which users can ping multiple I P addresses simultaneously
and on which ping statistics are displayed. The following describes
observations made through experiments with the utility. When pinging
several targets with the same instance of the ping application, the ICMPID is
the same for all targets, and the ICMP Seq isagloba counter
(increment=0x0100). This produces a signature with an ICMP ID of class
“C", and an ICMP Seq of class“1Global”. However, if the ping utility is
closed and reopened, the ICMP Seq isreset to 0, and then isincremented
(again by 0x0100), but the ICMP ID may change or not. If different, the new
ICMP ID is equal to the previous plus and increment multiple of 0x0100. In
this case, the signature produced has an ICMP ID of class“TDI” and an
ICMP Seq of class“IGloba”. If the computer is rebooted, the ICMP ID
definitely changes, but still appears to be related to the previous value,

leading again to asignature with an ICMP ID of class“TDI” and an ICMP
Seq of class “I1Global”. We chose not to include signatures for Novell 5 and 6
until the program is adapted to produce consistent signatures.

PassiveTest ICMP_ID_SEQ performs well at distinguishing between
families and between versions. Recall however, that in order to fingerprint a
host, this test requires capturing a sample of ICMP Echo Reguests directed at
multiple destination |P addresses. It may therefore require monitoring traffic
for awhilein order to complete a proper sample. Because of this, we aso
define two subtests PassiveTest ICMP_ID and PassiveTest ICMP_SEQ to
examine the ICMP Identifier and the ICMP Sequence Number independently.
PassiveTest ICMP_ID is of type Singleton and is performed on a packet of
type Echo Request. It examines the value of the ICMP ID to determineif itis
equal to one of the constant values used by Windows. It also examinesthe
length and content contained in the ICMP data.

http://download.info.apple.com/Apple_Support ArealApple Software Updates/Englis

h-North_American/Macintosh/Misc/.

3 TCPWatcher is a shareware application for testing TCP/IP networks. As with
MacTCP Ping, TCPWatcher comes with a GUI. It is available for download from
http://www.vicomsoft.com/ftp_site/hel p.ftp.html#Watcher

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 35

Fields under analysisfor the PassiveTest ICMP_ID are found in the IP and
ICMP headers. The criteriawe define are:

1. IsthelCMP ID value equal to a known constant value of Windows
system? (“0x0100”, “0x0200", “0x0300", or “other”)

2. IsthelP Don't Fragment bit set? (“Y” or “N")

3. What Type Of Serviceis specified? (decimal value)

4. What isthe length of the packet payload? (number of bytes)
5. What isthe content of the packet payload? (in hexadecimal)

Signature Example:
ICMPID=other;DF=N;TOS=0;Datal_en=12; ConstantData=0000;

Criterion 1 is meant to distinguish Microsoft systems from the other OS
families. The data content signature (criterion 5) is restricted to the
immutabl e portion of the ICMP data. In the Windows case, this data portion
starts directly after the ICMP header; in the Unix-like case, it starts after the
first 8 bytes, and in the Novell case it starts after the first 10 bytes. Unix-
based ping utilities append the fixed data at an offset of 8-bytes after the end
of the ICMP header; the first 8 bytes consisting of atimestamp used for the
calculation of the round trip as described in the man page of ping. The
Novell ping utility sends 12 bytes of data. Thefirst 8 bytes appear to act asa
timestamp (as with Unix), and the next two bytes behave like a counter per
target. That is, for each new target this two-byte field starts at 0x0000 in the
first Echo Request, it is then incremented by 0x0100 in the subsequent Echo
Requests directed at that target'. The data portion that is fixed in the Novell
case consigts of the remaining two bytes.

PassiveTest ICMP_SEQ is of type Sample; the sample contains ICMP Echo
requests sent by a given host and directed at a single destination address.
Since most ping utilities send by default several packets in order to collect
statistics™, such samples arelikely to be seen. PassiveTest ICMP_SEQ

36

“ While this behaviour is exacly how the ICMP Sequence Number is used by Unix-like
ping utilities, the ICMP Sequence Number is used differently by Novell’s ping. More
presisdly, in the case of Novell, the two-byte field in the data portion is reset to zero
when a new target is being pinged, while the ICMP Sequence Number field does not.
This provides the Novell ping utility with two counters. one that is globally
incremented independently from the target (giving the number of Echo Requests sent in
total), and one that is specific for each target (giving the number of Echo Requests sent
to that target).

> To test the reachability of the target, the ping utility of Windows system send four
Echo Requests by default. The ping utility of Unix-based systems is configured by
default to keep sending Echo Requeststo the target until the user stops the application.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

attempts to characterize the setting of the ICMP Sequence Number in a
manner similar to the one performed by PassiveTest ICMP_ID_SEQ. Since
it analyses Echo Requests directed at a single target, this subtest cannot
determine whether the Sequence Number act as aglobal counter or asa
counter specific to each target. Thereforethe class“IGlobal” defined for the
test PassiveTest ICMP_ID_SEQ does not apply.

The criteriawe define for the PassiveTest ICMP_SEQ are:

1. What Class best describes how |CMP Sequence Numbers are generated?
("C" for constant, "I" for Incremental behaviour)

2. What invariant characterize the ICM P Sequence Numbers? (the value of
the ICMP Sequence Number itself if classis“C", the value of the
increment if classisincremental (class“l), or —1if noinvariant is
identified)

Signature Example: ICMPSeqClass=I;Seglnvariant=100;

The signatures for the two subtests are found in Table 28 and Table 29. As
with PassiveTest ICMP_ID_SEQ, the signatures for Mac OS versions 7 to 9
were produced using MacTCP Ping 2.0.2.

3.2.8 PassiveTest_TCP_SYNACK (Stimulus-Response)

Thistest isbased on nmap test T1 (which sends a crafted SYN packet to an
open port and analyses the SY N/ACK response).

PassiveTest TCP_SYNACK is a Stimulus-Response type of test, where the
stimulusisa SY N packet and the responseis a SYN/ACK packet. In contrast
with nmap T1 test, thisis apassive test, thus it does not send any packet, and
it only listens for matching pairs of SYN and SYN/ACK packets. Itisthe
host sending the SYN/ACK packet that is being fingerprinted, but fields from
both the SYN and the SYN/ACK packets are required for the anaysis.

Fields under analysis are found in the IP and TCP headers. The response
packets are analyzed based on eight criteria:

1. IsthelP Don't Fragment bit set in thein the response? (“Y” or “N”)

2. What isthe value of the IP Time To Live field in the response? (one-byte
integer expressed in decimal format)

3. What isthe value of the TCP Window size in the response? (decimal
value, or n(MSS) if Window sizeis "n" times the Maximum Segment
Size advertised in the SYN/ACK, or n(RegMSS) if Window sizeis "n"
times the Maximum Segment Size advertised in the SYN)

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 37

38

4. What isthe TCP Acknowledgment number in the in the response (in
relation to the sequence number of the triggering SY N packet)? (“S” if
equal, “S++” if incremented by 1, “O” for any other value)

5. What TCP options are included in the in the response? (TCP options are
ordered as they appeared in the packet, “M”= Maximum Segment Size,
“N"= No-operation, “T"= Timestamp, “W”= Window Scale, “S’=
SackOK, “L"=End Of Lig, “C.New"= Connection Counts New). We
a so capture the value for the Maximum Segment Size and Window Scale
options using the format “ @DecimalVaue'.

6. What TCP ECN bitsare s&t, if any, in the response? (“C"=CWR,
“E"=Ecn-Echo)

7. Werethe TCP ECN bits set in the stimulus (SYN packet)? (“C"=CWR,
“E”=Ecn-Echo)

8. What isthe set of TCP options requested by the stimulus (SYN packet)?
(TCP options are sorted in al phabetic order and the NOP option is
omitted from this set.)

Signature example:

DF=Y;TTL=64;WIN=12(MSS);AckNb=S++:TCPecn=;TCPopts=M @1460;S
YN_ TCPecn=;SYN_Setof TCPopts={ M @1460TW} ;

The signatures collected appear in Table 20 of Annex A. Criterion 3
examines the Window Size (WIN) value of the SYN/ACK. It can be
observed from Table 20 that the WIN value of FreeBSD, Mac OS X,
OpenBSD, Windows, SunOS 5.8 and 5.9, and NetBSD prior to 1.3isa
multiple of the Maximum Segment Size (MSS) advertised in the stimulus. It
appears that the WIN value of SYN/ACK produced by certain OSes may also
depend on the network service running, the window size advertised in the
SYN and the TCP window scale option of the stimulus.

As described in section 4.2.7, we used severa different SYN stimuli to collect
the SYN/ACK responses from the operating systems attached to the testbed.
The signature database would benefit from testing a wider range of network
services and from including in the fingerprint the influence of the WIN value
contained in the SY N.

During the signature collection process, we observed that the order in which
the options are set in the SY N packet has no impact on the response.
Thereforeit is sufficient for criterion 8 to check only which options are set in
the SYN packet, independently of the order in which they appeared, and of
the padding in between options (the NOP). We believe the stimuli used to
collect the signatures are representative (at least TCP option wise) of any
SYN packet that can appear on the network in current implementations.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Taking the SYN into account generally helps to reduce the number of
possible OSes. Take for instance the previous signature example. A simple
database query reveals that this signature is associated with eleven FreeBSD
versions (3.0, 3.1, 3.2,3.3,34,35.1,4.0,4.1,4.1.1, 4.2, 4.3). If wequery
the database for the number of signatures matching the first six criteria(i.e.
DF=Y;TTL=64;

WIN=12(MSS);AckNb=S++; TCPecn=;TCPopts=M @1460;), but not
necessarily satisfying criteria 7 and 8, then the number of possible OS
versions jumps to twenty-seven (FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1,
222,225,226,227,22.8,30,3.1,32,33,34,351,40,4.1,41.1,4.2,
4.3, 4.4, and dso OpenBSD 2.9, 3.0, 3.1, 3.2, 3.3). Thisisgeneraly the case
for the other signatures produced by this test.

3.2.9 PassiveTest TCP_RSTACK (Stimulus-Response)

PassiveTest TCP_RSTACK isbased on nmap’s T5 test (which sendsa SYN
packet to a closed port). Itissimilar to the “PassiveTest TCP_SYNACK”
test, but instead of looking for matching pairs of SYN and SY N/ACK
packets, it looks for matching pairs of SYN and RST/ACK packets. Itisthe
host responding with the RST/ACK packet that is being fingerprinted, but
fields from both packets are required for the analysis.

SY N packets addressed to closed ports are normally rejected by mean of a
RST/ACK packet. Note however that a RST/ACK response does not ensure
that the targeted port isin the state CLOSED. The response may come from a
filtering device responding on behalf of the target. If we have no information
about the state of the targeted port, then the result of the test islessreliable.

Fields under analysis are found in the IP and TCP headers. The response
packets are analyzed based on seven criteria:

1. IsthelP Don't Fragment bit set in the response? (“Y” or “N”)

2. What isthe value of the IP Time To Live field in the response? (one-byte
integer expressed in decimal format)

3. What isthe value of the TCP Window sizein the response? (two-byte
integer expressed in hexadecimal)

4. What isthe TCP Acknowledgment number in the response (in relation to
the sequence number of the stimulus)? (“S” if equal, “ S++”" if
incremented by 1, “O” for any other value)

5. What TCP ECN bits, if any, are set in the response? (“C"=CWR,
“E"=Ecn-Echo)

6. What TCP flags are included in the response? (“R"=RST or
“RA”=RST/ACK) Note: If theflagis“R" alone, the Acknowledgment

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 39

number of criterion 4 islikely to be“O” sincethefied isinvalid when
the ACK flag isnot set.

7. What TCP options are included in the response? (the string "echoed": if
they are echoed from the stimulus, if not: a string containing the options
ordered as they appeared). Note: Most systems don't send any TCP
option when resetting a connection.

Signature Example:
DF=N;TTL=64;WIN=4000;AckNb=S++;TCPflags=AR; T CPopts=echoed;

The signatures collected appear in Table 21 of Annex A. Systemsthat are
easily distinguished based on this test are the QNX systems because they
echo the Window size and TCP options. SunOS5.5t05.7 and Mac OS7t0 8
aso have apeculiar behaviour. They echo the TTL value of the stimulusin
the response. Assuming they get probed by systems with different TTL
values, they would be identified by PassiveTest. TCP_RSTACK sincethe
results would converge to this subset of possible OSes.

3.2.10 PassiveTest_ICMP_Unreach (Stimulus-Response)

Thistest isbased on xprobe’ s and nmap’ s tests that send out a UDP packet to
aclosed port to probe an ICMP port unreachable message. That is, the
stimulusis a UDP packet sent to a closed port, and the Responseisan ICMP
port unreachable message (type=3, code=3).

Both of these active tools send the UDP packet to a port presumed to be
closed. A difficulty in modifying the test so that it can be conducted
passively isin defining a specific filter for the UDP traffic. Our approachis
to capture all UDP packets, store them temporarily in memory™®, when an
ICMP port unreachable message is seen, the program then searches for the
corresponding stimulus in the allocated memory.

Fields under analysis are found in the IP, ICMP and UDP headers. The
responses are categorized based on the following nine criteria:

1. IsthelP Don't Fragment bit set in the response? (“echoed” if echoed
from the stimulus, “Y” if the bit is set to one by default, or “N” if it is set
to zero by default)

2. What isthe IP Time To Live value in the response? (decimal value)

3. What Type of service (TOS) is set in the response? (“echoed” if echoed
from the stimulus, or decimal value otherwise)

1° A stimulus with no matching response is removed from the allocated memory once it
gets two seconds old. The two-second is a default value for the user-defined parameter
of a Simulus-Response type of test.

40 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

4. How much bytes of the UDP Header and UDP data were returned in the
response? (“all” if returned integrally, the number bytes returned
otherwise)

5. HasthelP Totd Length field of the offending packet been echoed
correctly in the response? (“Y” if echoed correctly, “-” if less than the
original value, or “+” if it is greater)

6. HastheIP Identification field of the offending packet been echoed
correctly in the response? (“Y”, or "N")

7. HavethelP flags and IP dataOffset fields been echoed correctly in the
response? (*Y” if fields are echoed correctly, “0” if zeroed it out, “N”
otherwise)

8. Hasthe IP checksum of the offending packet been zeroed out in the
response? (0", or “nonzero”)

9. Hasthe UDP checksum of the offending packet been echoed correctly in
the response? (“Y” if it is echoed correctly, “0” for zeroed out, “N” if
incorrect, or “N/A” if not enough bytes of the datagram were returned to
alow acheck on thisfield)

Signature example:

DF=echoed; TTL=255;TOS=0;UDPL en=8;InteglPLen=Y ;Integl PID=N;Integl
PFlags=N; Integl Pck=0;IntegUDPck=0;

Information on how these fields are used in fingerprinting can be found in the
document describing xprobe [6].

While developing the signatures, targets were stimulated with different
stimulus setting of the IP Don’'t Fragment bit and the IP Type Of Service to
determine if these values were echoed back. More details regarding the
signature collection process can be found in section 4.2.8. The signatures
collected appear in Table 22 of Annex A. Thistest discriminates very well
among the different OS families and among the different versions within
those families. There are no signatures for BeOS and QNX 4.0t0 6.0. These
systems did not respond to UDP packets destined to a close port.

3.2.11 PassiveTest_ICMP_Echo (Stimulus-Response)

Thistest is based on the xprobe test that sends an ICMP Echo request to its
target. The stimulusisan ICMP Echo request (type=8) having a nonzero
value for the ICMP code. The response packet is an ICMP Echo reply
(type=8). Aswith all Stimulus-Response tests, it is the host sending the
response packet that is being fingerprinted, but both the stimulus and the
response are required for the analysis.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 41

42

Fields under analysis are found in the IP and ICMP headers. The responses
are categorized based on the following criteria

1. Wasthere aresponse to the stimulus? (“Y” or “N”)

2. IsthelP Don't Fragment bit set in the response? (“echoed” if echoed
from the stimulus, “Y” if the hit is set to one by default, or “N” if it is set
to zero by default)

3. What isthe IP Time To Live value in the response? (decimal value)

4. What Type Of Serviceis specified in the response? (“ echoed” if echoed
from the stimulus, or decimal val ue otherwise)

5. What isthe IP Identification value in the response? (“ echoed” if equal to
the IP ID of the stimulus, “0” if equal to zero, “nonzero” otherwise)

6. What isthe ICMP codein the response? ("echoed" if the valueis equal to
the nonzero value of the stimulus, the decimal value otherwise)

Signature example: Resp=Y ;DF=echoed; TTL=128;TOS=0;
| PID=nonzero; Code=0;

The signatures collected appear in Table 23 of Annex A. The reader may
wonder why we check for responsiveness (first criterion) since most OSes are
configured to respond to directed ICMP echo requests. We check for
responsiveness because we noticed that some OSes, QNX 4.0/6.0 for
instance, do not respond to ICMP echo Request when the ICMP code is
nonzero. That is, they respond only if the ICMP codeis 0. These OSes can
therefore easily be identified by PassiveTest ICMP_Echo if thistest ever
OCCuUrs.

Note that the stimulus we are looking for isin a sense abnormal because of
the nonzero ICMP code. Therefore it should not be seen as part of normal
traffic. Nonetheless, if such traffic appears, the test can identify Microsoft
family systems. Thisis because the Microsoft family appears to be the only
one to overwrite the ICMP codein their response. We decided to implement
thistest, even though the stimulus is unlikely to appear, in order to detect
(and benefit from) thiskind of “Microsoft give-away” probing. Nonetheless,
aglance at the signatures produced leads us to believe that a modified version
of thistest, based on criteria 2, 3, 4, and 5, and performed on regular ICMP
echo request / ICMP echo reply pairs would aso be useful in distinguishing
between families.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

3.2.12 PassiveTest_ICMP_Info (Stimulus-Response)

Thistest is based on xprobe test that sends an ICMP Information regquest to
detect whether or not a host respondsto thiskind of request. The stimuli are
ICMP Information requests (type=15) and the responses are ICMP
Information replies (type=16). The ICMP Information Request/Reply pair
was intended to support self-configuring systems such as diskless
workstations at boot time, to allow them to discover their IP address. Very
few machines are configured to respond to information requests, especially
since this mechanism is now obsolete as stated in RFC 1122[21]. There are
presently other protocols a diskless machine can use to discover its own IP
address. According to the author of xprobe, OpenVMS, HP UX 10.x, and
SunOS 4.x do respond to ICMP Information requests. We do not have access
to any of these systems to confirm.

Fields under analysis are found in the IP and ICMP headers. The responses
are categorized based on the following criteria

1. Wasthere aresponse to the stimulus? (“Y” or “N”)

2. IsthelP Don't Fragment bit set in the response? (“Y” or “N”)

3. What isthe IP Time To Live value in the response? (decimal value)
4. What Type Of Serviceis specified in the response? (decimal value)

5. What isthe IP Identification value in the response? (“ echoed” if equal to
the IP ID of the stimulus, “0” if equal to zero, “nonzero” otherwise)

Signature example: Resp=Y ;DF=Y; TTL=255;TOS=0;|PID=nonzero;

All operating systems connected to the testbed silently discard any ICMP
Information request (signature in thiscase is: Resp=N;DF=N/A;TTL=
N/A;TOS= N/A;IPID= N/A; where “N/A” standsfor Not Applicable). Please
note that in the case of a non-response, it would be best to verify that the
system is up and that the ICM P messages are not filtered before we conclude
that this system is configured not to respond to ICMP Info requests. We have
not addressed thisissue for the prototype but we can think of afew passive or
active techniques to discriminate between both cases. Passively, we could
check for recent network activities, actively, we could inject an ARP request
for targets that are on the same networks as the monitor. For other targets, we
may consider sending an ICMP echo-request, or use stealth host discovery
techniques such as those described in [22].

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 43

3.2.13 PassiveTest_ICMP_TS (Stimulus-Response)

44

Thistest is based on the xprobe test that sends an ICMP Timestamp request to
detect whether or not a host responds to thiskind of request. The stimuli are
ICMP Timestamp requests (type=13) and the responses are ICMP Timestamp
replies (type=14).

The ICMP Time Stamp request alows a node to query another for the current
time. Thisallowsthe sender of the request to estimate the latency the
network is experiencing. Typically, recent operating systems do implement
this mechanism. For example, Windows 95/NT do not support it while
Windows 98/M e/2000/X P do.

Fields under analysis are found in the IP and ICMP headers. The responses
are categorized based on the following criteria

1. Didthetarget respond to the stimulus? (“Y” or “N")

2. IsthelP Don't Fragment bit set in the response? (“echoed” if echoed
from the stimulus, “Y” if the bit is set to one by default, or “N” if it is set
to zero by default)

3. What istheIP Time To Live value in the response? (value in decimal
format)

4. What Type Of Serviceis specified in the response? (“echoed” if echoed
from the stimulus, or decimal value otherwise)

5. What isthe IP Identification value in the response? (“ echoed” if equal to
the IP ID of the stimulus, “0” if equal to zero, “nonzero” otherwise)

Signature example: Resp=Y ;DF=Y; TTL=255;TOS=echoed;|PID=0;

The signatures collected appear in Table 25 of Annex A. Thistest isuseful in
distinguishing between older and newer versions. Moreover, few OSes do
not echo the DF bit and TOSfield. Only the Windows family do not echo the
TOS value; this family set the TOS to 0 independently of the requested TOS.
OSes that do not echo the DF are NetBSD 1.6, 1.6.1, QNX 6.2.1, the
Windows family, the Linux family, and the SunOS family. From the OSes
that do not echo the DF bit, Linux 2.4.0-2.4.4 and SunOS set the DF to 1, and
the othersto 0. Moreover, while the TCP/IP stack implementation of SunOS
resemblesin many aspects to the implementation in Mac OS prior to X, this
test helps discriminating between the two families since Mac OS systems
prior to X do not respond to ICMP Timestamp Requests.

As mentioned earlier, in the case of anon-response, it would be preferable to
verify that the system is up, that no filtering device blocks ICMP messages,

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

and that the monitor has proper coverage before concluding that the system
does not respond to ICMP Timestamp Requests.

3.2.14 PassiveTest_ICMP_Mask (Stimulus-Response)

Thistest is based on the xprobe test that sends an ICMP Mask address request
to detect whether or not a host respondsto this kind of request. The stimuli
are ICMP Mask address requests (type=17) and the responses are ICMP Mask
address reply (type=18). The ICMP Address Mask Request (and Reply)
allows a node to determine what address mask is in use on a subnet to which
it is connected. It was primarily intended for diskless workstation at boot
time. RFC 1122 states that the implementation of the mechanism is entirely
optional’’. Recent operating systems tend not to respond to Mask Address
requests. Therefore thistest can discriminate between older and newer
versions among a given family. Within the Windows family for example,
Windows 95/98/NT (prior to NT service pack 4) respond to directed Mask
address requests, while al more recent Windows systems do not. SUN
Solaris systems (even newer ones) appear to be cooperative with this kind of

query.

Fields under analysis are found in the IP and ICMP headers. The responses
are categorized based on the following criteria

1. Didthetarget respond to the stimulus? (“Y” or “N")

2. IsthelP Don’'t Fragment hit set in the target’ s response? (“echoed” if
echoed from the stimulus, “Y™” if the bit is set to one by default, or “N” if
it is set to zero by default)

3. What isthelP Time To Live value in the target’ s response? (“echoed” if
equal tothe TTL of the stimulus, otherwise it isthe valuein decimal
format)

4. What Type Of Serviceis specified in the target’ s response? (“ echoed” if
echoed from the stimulus, or decimal value otherwise)

5. What isthe IP Identification value in the target’ s response? (“ echoed” if
equal tothe IP ID of the stimulus, “0” if equal to zero, “nonzero”
otherwise)

Signature example: Resp=Y;DF=Y; TTL=255;TOS=echoed;|PID=nonzero;

Y This can be considered good practice, as the content of the reply would alow a
malicious attacker to gain knowledge about a remote network’s configuration.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 45

46

Signatures are found in Table 26. Aside from discriminating among OS
versions based on responsiveness, thistest is useful to identify certain OS
versions because of peculiarities in the setting of the examined fields. For
instance Mac OS 9.0 echoes the setting of the DF bit while all other OSes
tested use a default setting, independent from the value in the stimulus.
While most OSes echo the TOS value, the Windows family and Netware 5.1
set the DF bit to zero by default. Moreover, the Netware family can be easily
identified because they echo the TTL value for this particular ICMP type.

Again, in the case of anon-response, it would be preferable to verify that the
system is up, that no filtering device blocks ICMP message, and that the
monitor has proper coverage before concluding that the system does not
respond to ICMP Mask requests.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

4. Collecting the signatures

This section describes how we collected the OS fingerprints for each test. The
approach taken was to build our own database of fingerprintsin a controlled private
environment. Target operating systems were installed and queried methodically in the
local testbed and the prototype was used to collect and store the signatures observed.
While thisis somewhat time consuming initially, it helped achieve control and
uniformity over the testing process. The fingerprints can be found in Annex A.

4.1 Computer Network Testbed

The laboratory facility of the Network Security Research Group comprises a number
of computers, switches, routers and network security devices to support research
activities. It was decided that the testbed for this activity would include virtual
machines in order to test agreat variety of operating systems, without having to
dedicate alarge number of computers. Therefore, some computersin the testbed
emulated severd different guest operating systems. A guest operating systemis
basically encapsulated within asingle file that acts as avirtual disk, thereby isolating it
from the host system and other virtual machines.

Most of the virtual OSes in the testbed wereinstalled under VMware [23]. VMware
creates avirtualized x86 PC environment in which a guest operating system can run.
VMware does not modify the behaviour of the host and guest operating systems. A
host treats a guest workstation as an application, and as quoted from [23], “no
modifications need to be made to the guest operating system when it isinstalled on a
virtual machine.” Applications on a guest operating system run exactly asthey doon a
regular system. The virtual machines were configured to use bridged networking so
that a guest operating system appeared as an additional computer on the same physica
Ethernet network as the host. According to the vendor, one can run simultaneously as
many guest OSes asthe RAM allowsfor. Nonetheless, we refrained from
simultaneously opening too many guest operating systems per host, to insure that
neither the host nor its network adapter was overloaded.

Virtual PC is another software product we used to emulate few operating systems. This
product provides low-level PC hardware emulation, allowing the installation of any
PC-based operating system [24]. In particular, Virtua PC was used in the testbed to
install older systems for which the installation in VMware was troublesome. The few
host computers on which VMWare and Virtual PC were ingtalled have Intel Pentium |1
(~450Mhz), Il (~1Ghz), and 1V (~1.8 Ghz) processors, a minimum of 512 MB of
RAM, and disk drives capacities up to 120 GB.

The Macintosh virtual machines run on Apple hardware using Mac-on-Linux software

[25]. The Apple computers were 600 MHz and 400 MHz PowerPC with a minimum
of 256MB of RAM each.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 47

With the exception of one SUnOS version installed in VMware, the SunOS systems are
not emulated and are installed on Sparc stations (UltraSparc 200M Hz-300MHz and
AXxil311-320 (SS10 and SS20 clones)). The exception iswith SunOS 5.8. This
version was installed both on a UltraSparc workstation and on an Intel-based PC (
under VMware) to determine whether there were differences in the signatures of
SunOS systems due to the processor technology (i.e. Intel versus Sparc).

Due to the use of virtual machines, the small testbed provided testers with accessto
close to 200 operating system versions from different families (Windows, Linux,
OpenBSD, FreeBSD, NetBSD, SunOS, Macintosh, QNX, Novell, and BeOS). Thelist
of systemsinstalled is provided in Table 2 and Table 3. Linux kernels of Table 2 were
downloaded from ftp://ftp.kernd.org/pub/, while Linux kernelsin Table 3 were those
packaged with different Linux distributions.

The testbed is depicted in Figure 2. It includes the target systems from which to
collect the signatures (i.e. the systems to fingerprint), the passive OS detection
prototype to construct these signatures, a monitor to record all network traffic in
libpcap format (for further reference and re-learning purposes), and afew other
computers used in certain cases to establish a communication with the systems under
test. The signature collection processis discussed in the next section.

Systems sending stimuli b Systems to fingerprint
| MATTLTYL] . | . | - |
S Spa.tk Intel nlath Apple PowetPC
Inerlocitots (0o virtual syseris) ot ire with
and VitmlPC Iac-on-Linusxg

48

Passive monitoring systems

Traffic collectar Prototype
(libpcap froat) nmning i
trode lecarn

Figure 2. Testbed from which the signatures were collected

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

6V

Table 2. Tested Operating Systems

Linux 2.2.x Linux 2.4.x

BeOS FreeBSD (kernel.org) (kernel.org) MacOS NetBSD Netware OpenBSD QNX RTP SunOS \Windows

5 2.0.5 2.2.0 2.4.0 10.1.0 1.1 4.11 2.0 4 5.5 NT 3.51
2.1.0 2.2.2 2.4.1 10.1.1 1.2 4.11 sp9 2.1 6 5.5.1 95
2.1.5 2.2.1 2.4.2 10.1.2 1.2.1 5 2.2 6.1 5.6 98
2.1.6 2.2.3 2.4.3 10.1.3 1.3 5 sp6a 2.3 6.2 5.7 98 SE
2.1.7.1 2.2.4 2.4.4 10.1.4 1.3.1 5.1 2.4 6.2.1 5.8 Me
2.2.0 2.2.5 2.4.5 10.1.5 1.3.2 5.1 sp6 2.5 (Intel) 5.8 2000
2.2.1 2.2.6 2.4.6 10.2.1 1.3.3 6 2.6 5.9 2000 sp2
2.2.2 2.2.7 2.4.7 10.2.2 1.4 6 sp3 2.7 2000 sp3
2.2.5 2.2.8 2.4.8 10.2.3 1.4.1 2.8 2000 sp4
2.2.6 2.2.9 2.4.9 10.2.4 1.4.2 2.9 NT 4
2.2.7 2.2.10 2.4.10 10.2.5 1.4.3 3.0 NT 4 sp3
2.2.8 2.2.11 2.4.11 10.2.6 1.5 3.1 NT 4 sp4
3.0 2.2.12 2.4.12 7.5.3 1.5.1 3.2 NT 4 sp6
3.1 2.2.13 2.4.13 7.5.5 1.5.2 3.3 XP Home
3.2 2.2.14 2.4.14 7.6 1.5.3 XP Pro
3.3 2.2.15 2.4.15 7.6.1 1.6 Net
3.4 2.2.16 2.4.16 8.0 1.6.1 2003
3.5.1 2.2.17 2.4.17 8.1
4.0 2.2.18 2.4.18 9.0
4.1 2.2.19 2.4.19 9.1
4.1.1 2.2.20 2.4.20 9.2.1
4.2 2.2.21 9.2.2
4.3 2.2.22
4.4 2.2.23
4.5 2.2.24
4.6
4.6.2
4.7
4.8
5.0
5.1

0§

Table 3. Tested Operating system: Linux distribution

Distribution

Debian

Redhat

S.u.S.E

Mandrake

Releases

(and kernels)

1.3 (kernel 2.0.29)

2.0 (kernel 2.0.34)
2.1 (kernel 2.0.36)
3.0 (kernel 2.2.20-idepci)

4.2 (kernel 2.0.30)

5.0 and 5.1 (kernel 2.0.32)
5.2 (kernel 2.0.36)

6.0 (kernel 2.2.5-15)

6.1 (kernel 2.2.12-20)

6.2 (kernel 2.2.14-5)

7.0 (kernel 2.2.16-22)

7.1 (kernel 2.4.2-2)

7.3 (kernel 2.4.18-3)

8.0 (kernel 2.4.18-14)

9.0 (kernel 2.4.20-8)

7.2 (kernel 2.4.4-4GB)

7.3 (kernel 2.4.10-4GB)
8.0 (kernel 2.4.18-4GB)
8.1 (kernel 2.4.19-4GB)

PPC 9.1 (kernel 2.4.21-0.13mdk)

4.2 Stimulation Procedures and Traffic Capture

Analysis of the code implementation in open source systems was often used as a
starting point for constructing the signatures, but not for determining the signatures.
Signatures contained in the database were produced from network traffic collected
from the testbed. Target operating systems were installed and queried methodically in
the local testbed and the prototype was used to collect and store the signatures
observed. While this was somewhat time consuming initialy, it helped achieve
control and uniformity in the testing process. Signatures for each test were collected

separately.
The general procedure was the same for al tests:

1. Stimulate each target sequentially (one after the other), either from aremote
machine or directly from the target depending on the test;

2. Capture the traffic with amonitor located on the same network segment as the
targets, and save the traffic trace in the tcpdump (libpcap) format. Thistraffic
trace file was accompanied by a text document describing how the targets were
stimulated and by alist of these targets (i.e. their IP addresses (which were private
and static) with their operating systems).

3. Oncethetraffic trace was complete, it was analysed by the prototype program
running in the learning mode.

When running in learning mode, the program interfaces with a database containing
several tables. Firgt, thereis atable that associates each |P address with its operating
system. Thistable is managed manually and updated each time anew systemis
installed. Then, for each test there are two tables: one containing the distinct
signatures, and one that associates an operating system with one or sometimes
several™® signatures. Some tests, the PassiveTest. TCP_RSTACK for instance, have
few distinct signatures (few entries in their signature tables). Thisis because several
different systems respond identically to such tests. Keeping the signatures apart from
their OS associations helps in recognizing tests that best distinguish between operating
systems. Thusin the learning mode, the program analyses the traffic, seeking suitable
packets to be tested. When packets are found, the prototype generates the fingerprint,
adds the fingerprint to the appropriate signature table, and creates the association
between this signature and the operating system™ in the second table.

When associating an |P address to an operating system in the database, the operating
system description is broken down into severa fields to allow comparison between

outputs. The fields that make up the descriptions are “Type”, “Release”, “Version”,
and “Kerngl”. “Type’ refersto the family (e.g. Windows, Mac OS, etc.). “Release”

'8 For example, this is the case for the PassiveTest. TCP_SYNACK, for which each OS
has been stimulated during the signature collection process by eight different stimuli,
each requesting a particular set of TCP options.

9 The program can obtain the OS associated with an |P address by querying the table
that contains this information for hosts connected to the computer network testbed.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 51

may be empty depending on the family. In the Windows case for instance, thisfield
correspondsto NT, XP, 2000, etc. and in the Mac OS case it correspondsto 7, 8, 9,
and 10. The“Version” provides further details such as the service pack for Windows
or aspecific Mac OS 10 (Mac OS X) version such as 10.2.2. The“Kernel” fiddis
used for Linux systems.

The procedures adopted when stimulating the targets are briefly discussed in the
following sections. Note that when capturing traffic traces, we required that no other
activitiestook place on the network testbed.

4.2.1 PassiveTest TCP_SYN

Thistest requires a single packet, namely a TCP SY N segment, from the
target. To force the transmission of a SYN packet, we used the web browser,
the telnet and ftp clients on each operating system, initiating hereby
communications with a server connected to the testbed. The signatures are
shown in Table 12 of Annex A.

4.2.2 PassiveTest TCP_ISN

52

Thistest analyses Sequence Numbers found in the SYN and SYN/ACK
packets. It requires much attention when generating signatures. We
generated 60 samples (of 6 packets each) for every operating system. Several
samples were required in order to express the greatest common divisor (gcd)
and the standard deviation (std) of a sample in terms of lower and upper
bound valuesin the signature table. Thislower and upper bound approach
was adopted because a sample contains so few packets that these measures
may vary alot from one sample to another. When the programrunsin a
mode different than learn, it computes the gcd and std on a sample, and tries
to find a signature in the database for which the two computed values fall into
the two respective ranges. The ranges for the ged and std are thus estimated
based on the 60 samples captured. The signatures are shown in Table 14 of
Annex A.

To capture these samples, we used a third party tool called hping2 [26].

Using this tool from aremote host connected to the testbed, a series of crafted
SY N packets were sent to each target (360 SY N packetsin total per target).
Each SY N packet was aimed at an unfiltered open port. For each stimulus the
target responded with a SYN/ACK segment announcing the initial Sequence
Number for the referenced connection. Upon reception of the SYN/ACK,
hping2 terminated the connection by sending aRST.

We observed that some targets do not handle the RST properly, and
retransmit the SYN/ACK. Linux machineswith kernel 2.4.18 and above, fall
into this category. The observed behaviour of these Linux systemsisthe
following: they respond to the SYN with 6 SYN/ACK segments (i.e. 5
retransmissions). They wait 3 seconds before sending the first
retransmission, then 6, 12, 24, and finally 48 seconds between the last two.
This mishandling of the RST packet during the connection set-up was

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

observed for few other systems. This situation is not unigue to the packet
generator used; it holds for any other tool that can perform a so-called half-
open SYN scan on its target.

While one can make an active OS detection test based on these observations,
this retransmission behaviour causes problems for the prototype program that
analysesthe traffic. The program does not currently detect such duplicates.
This causes samples containing old retransmitted 1SNs to be processed.

When we observed a target having this problematic behaviour, we removed
al traffic regarding this OS from the tcpdump trace, and stimulated this target
otherwise, using a complete three-way handshake connection set-up. To do
this we used a shell script calling nmap with the —sT option (in a“for” loop).

4.2.3 PassiveTest IP_ID

Thistest, of type Sample, captures all IPtraffic. Based on the observation
that some OSes maintain several 1P ID counters running at the same time, one
per (source, destination, protocol) triple, we tried to generate traffic that
would mix ICMP, TCP, and UDP communications, and as far as possible, we
tried to mix it based on the following parameters. Protocols, IP destination
addresses, source and destination ports. The goal was to generate enough
samples so that the program could determine whether the IP ID generation is
session dependent or not. The approach taken was to utilize two shell scripts:
oneinstalled on the machine under test (which is often platform dependent),
and oneingtall on two different interlocutors. The system under test initiates
different communications with both interlocutors, which in turn aso initiate
communications with the target. The signatures are shown in Table 17 of
Annex A.

4.2.4 PassiveTest TCP_TS

Thistest requires capturing TCP SYN or SYN/ACK packets having the
timestamp option set. To generate the signatures for this test, we used the
same traffic traces collected for the PassiveTest TCP_ISN. Note that the
crafted stimuli (SYN packets) had the TCP option turned on. The signatures
are shown in Table 18 of Annex A.

4.2.5 PassiveTest ICMP_ID_SEQ

Thistest requires capturing |ICMP Echo Requests transmitted by the ping
utility installed by default on the system. Thereisno ping utility installed by
default on Mac OSversions 7t0 9. As mentioned in section 3.2.7, afreetool
from Apple Computer wasinstalled for testing. For most OSes, the ping
utility consists of acommand line program. A shell script was written to
execute ping commands in sequence. The script was conceived to alow the
capture of six samples containing six Echo Requests each. Different samples
test have different test purposes. In particular, we were interested in
examining the impact of pinging different targets and having other processes
running. The same traffic traces were used to collect the signatures for the

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 53

subtests PassiveTest ICMP_ID and PassiveTest ICMP_SEQ. The signatures
arefound in Table 27, Table 28 and Table 29.

4.2.6 PassiveTest ARP_Request and PassiveTest ARP_Retransmit

Both of these tests capture ARP Request packets. PassiveTest ARP_Request
requires asingle packet, while PassiveTest ARP_Retransmit requires a
sample of such packets. To generate the traffic, the targets were stimulated
using induce-ARP (described in section 2.1). The signatures are shownin
Table 13 and Table 19 of Annex A.

4.2.7 PassiveTest TCP_SYNACK and PassiveTest TCP_RSTACK

To get the SYN/ACK and RST/ACK packets, targets were probed from eight
different machines. These machines were selected for their different sets of
TCP options they used to initiate a connection. The different sets of TCP
options of the stimuli are summarised in the following table.

Table 4. Stimuli used to collect SYN/ACK and RST/ACK signatures

OSused for sending Set of TCP options TCP optionsordered asthey

the stimulus contained in the stimulus appear ed in the stimulus

Windows NT4 {M} M @1460

QNX 6.0 {M@1459} M@1459

Windows 2000 {M,S} M@1460NNS

OpenBSD 2.6 {M,T,W} M@1460NW@ONNT

NetBSD 1.6 {M, T@0,W} M @1460NW@ONNT @0

FreeBSD 2.2.8 {C.New,M,T,W} M @1460NW@ONNTNNC.New

Linux 2.4.7 {M,ST W} M @1460STNW @0

OpenBSD 2.9 {M,ST,W} M@1460NNSNW@ONNT

54

The TCP options of the Windows NT 4 and QNX 6.0 stimuli differ by the
value of the MSS option. The QNX 6.0 stimulus was chosen to detect OSes
that echo the MSS value in their answer. The OpenBSD 2.6 and the NetBSD
1.6 initiate a connection with the same set of TCP options, except that
NetBSD 1.6 advertised aTSval of 0. The effect of this practice isthat some
OSes that normally support the option will not participate in any timestamp
exchange. More explicitly, these machines will show support for the
Timestamp option in their response to OpenBSD 2.6, but not in their response
to NetBSD 1.6. Thisisthe casefor Linux 2.4.0 that responds with TCPopts=
M@1460NNT NW@0 when responding to a stimulus with

SYN_SetOf TCPopts={ M @1460TW?}, but with TCPopts= M @1460NW @0
when responding to a stimulus with SYN_SetOf TCPopts=

{M@1460T @OW} (seesignaturesfor Linux 2.4.xx from Table 20). The
FreeBSD 2.2.8 stimulus was chosen because it advertises a non-standard
option (experimenta status) as described in section 3.2.1. Thelast two OSes
(Linux 2.4.7 and OpenBSD 2.9) have the same TCP optionsin their SYN but
placed in a different order. We wanted to verify by this means that the order

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

in which options are set in the SY N packet does influence the order in which
the supported options are set in the response. Except for Mac OS 7.5.3 to
8.1%, al other OS tested responded identically whether the SYN came from
OpenBSD 2.9 or from Linux 2.4.7. Thus when constructing the signatures, it
seems sufficient to check only which options were set in the SYN packets,
independently of the order in which they appear, and of the padding in
between options (the NOP). This practice helps reducing the number of
stimuli required to express al possible SYN packets.

The choice of these 8 stimuli to collect the signaturesis representative (at
least TCP option wise) of the SYN packets that can be transmitted by any of
the OS systems attached to the testbed.

From each of the computersin Table 4, we used the telnet client six times.
We specified each time a different destination port number in the telnet
command: three known to be open, and three known to be closed. The
signatures are shown in Table 20 and Table 21 of Annex A for

PassiveTest TCP_SYNACK and PassiveTest TCP_RSTACK respectively.

4.2.8 PassiveTest ICMP_Unreach/Echo/Info/TS/Mask

For these five Stimulus-Response tests, we stimul ated the targets using
hping2 and an in-house modified version of xprobel-0.0.2. Xprobel-0.0.2
functions according to alogic tree and thus terminates as it reaches a leaf.
Depending on the branch of the tree, the stimulus it sends may differ. Thein-
house modified version of xprobe produces a signature-based output based on
the responses to all of xprobe’s packets. a UDP packet aimed at a closed port,
an ICMP Echo request with anonzero ICMP code value, an ICMP
Timestamp request, an ICMP Mask Address request, and a ICMP Information
request. In addition, ashell script calling hping was used to craft ICMP
requests with different TOS and DF values to determine whether or not the
responses would echo the values contained in the stimuli. The signatures are
shown in Table 22 to Table 26 of Annex A.

% Experiments conducted on the testbed lead us to believe that these systems do not
process the last TCP option appearing in the SYN packet. Aside from the NOP and the
EOL options, these machines only support the MSS and Window scale option. They
show support for both options when stimulated by OpenBSD 2.9, but the Window
Scale option is missing from their responseto Linux 2.4.7.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 55

5. Field Test Evaluation

This section presents preliminary results obtained from two traffic traces captured in
November 2002 using atapping device located on the intranet web server’ s segment
of the corporate network. Both traffic traces were captured using tcpdump with afilter
specified to monitor IP traffic from and to 59 IP addresses. The tapping device, a
Shomiti UTP Tap IL/1 from Finisar Company, was installed in cooperation with the
Corporate Network Systems section to tap the internal web server'sline. The content
of the two traffic tracesis summarised in Table 5 and Table 6. Because of thetap’'s
location, the traffic captured consists mainly of HTTP traffic. There would also have
been some ARP traffic if the capture filter had not filtered it out. Thisomissionis
somewhat unfortunate since these traffic traces do not alow the testing of the ARP
based tests. Note that while the capture filter was specified to capture traffic involving
59 hosts™, the total number of different |P addresses seenis50 in Trace 1, and 55 in
Trace 2. Thetotal number of 1P addresses includes the count of hosts being monitored
and hosts with whom they have communicated.

Table 5. Traffic Trace #1

File format: libpcap

Capture filter: (defined to capture traffic to/from 59 hosts)
Dates: November 13 to 15, 2002

Elapsed time: 2 days, 5 hours, 10 minutes, and 40.614 seconds
Packet count: 8714

IAvg. packets/sec: 0.046

Bytes of traffic: 3815796

IAvg. bytes/sec: 19.932 (159.456bps)

IP addresses seen in total: 50

Protocols Bytes %Bytes Packets %Packets
Ethernet 3815796 100 8714 100
Internet protocol 3815796 100 8714 100
Internet Control Message protocol (ICMP) 120 0.003145 2 0.022952
Transmission Control Protocol (TCP) 3815676 99.99686 8712 99.97705
Hypertext transfer protocol (HTTP) 3807068 99.771267 8619 98.9098
Non-HTTP traffic 8608 0.2255886 93 1.0672481]

%! The operating system and version information for each of the monitored hosts was
a so determined manually for comparison purposes.

56

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Table 6. Traffic Trace #2

File format: libpcap

Capture filter: (defined to capture traffic to/from 59 hosts)

Dates: November 25 to 29, 2002

Elapsed time: 4 days, 3 hours, 40 minutes, and 21.397 seconds

Packet count: 14779

IAvg. packets/sec: 0.041

Bytes of traffic: 7451145

IAvg. bytes/sec: 20.766 (166.128bps)
IP addresses seen in total: 55

Protocols Bytes %Bytes Packets %Packets
Frame 7451145 100 14779 100
Ethernet 7451145 100 14779 100
Internet protocol 7451145 100 14779 100
Internet Control Message protocol (ICMP) 3662 0.049147 32 0.216523
Transmission Control Protocol (TCP) 7447483 99.95085 14747 99.78348
Hypertext transfer protocol 7423894 99.634271 14447 97.753569
Non-HTTP traffic 23589 0.3165822 240 1.6239258

Aside from the learning mode described in section 4.2, there are two other modesin
which the prototype can run: verify and find. When run in either of these modes, the
program interfaces with the database in which the signatures and corresponding OS
associations are stored. When atest produces a signature that cannot be found in the
database, a mechanism to look for an alternative signatureis called upon. The current
mechanism tries to find a match considering solely the most important fields of agiven
test. The "importance” of each field of atest isindicated with abinary weight. A
weight of 1 indicates that the value must match exactly; while a 0 means that the field
isnot required to match. Consider for instance the test PassiveTest. TCP_SY N which
consistsin 5fields: DF, TTL, WIN, TCP_Ecn; and TCPopts. We have assigned a
value of O for two of these fields: WIN and TCP_Ecn. This meansthat if thistest
produces a signature for which no perfect match® is found, the program will search the
database for aternative signatures matching the fields DF, TTL, TCPopts. To
illustrate, suppose a TCP SY N packet is captured and produces the following
signature:

DF=Y;TTL=128;WIN=faf0; TCP_Ecn=;TCPopts=M @1460NNS.

This signature does not appear in the database as it can be seen from Table 12, but two
aternative signatures can be found with different Window Size values:

« DF=Y;TTL=128;WIN=2000;TCP_Ecn=;TCPopts=M @1460NNS,
Associated with Windows 98 and 98 SE;

« DF=Y;TTL=128;WIN=4000;TCP_Ecn=;TCPopts=M @1460NNS,
Associated with Windows Me, Windows 2000 standard, sp3, sp4, sp6, Windows
XP Home, Professional, Windows Net and Windows 2003.

22 All fields computed match with those of a certain signature contained in the database.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 57

In this example, the program would informed the user that it had to look for alternative
signatures, and the set of possible OSes found consists of Windows 98, 98 SE,
Windows Me, Windows 2000 standard, sp3, sp4, sp6, Windows XP Home,
Professional, Windows Net and Windows 2003. Table 7 summarise the results of each
test obtained with the mode verify. It can be seen that the two traces allowed the
testing of the following tests only:

« PassiveTest TCP_SYN,

« PassiveTest TCP_SYNACK,
o PassiveTest TCP_TS,

« PassiveTest TCP_ISN,

o PassiveTest |IP_ID,

« PassiveTest ICMP_ID_SEQ,
« PassiveTest ICMP D, and
. PassiveTest ICMP_SEQ.

The columns entitled “# of good results’ give the number of times atest produced a set
of possible OSes that does not conflict with the actual OS of the systems being tested.
The columns “# of falseresults’ counts the number of times atest produced a
mismatch between the true OS and the set of possible OSes found. Finally, the
columns “# of results that cannot be verified” indicates the number of instances of a
test that were performed on I P addresses for which the true OS is unknown, and thus
for which the outcome cannot be verified. When it applies, the table indicates the
number of times a signature was obtained through the alternative signature

mechanism. For example, for the test PassiveTest TCP_SYN in Trace 1, 57 out of
523 signatures did not find a perfect match, but found a match using the aternative
signature mechanism. Some of the signatures obtained from Trace 2 were new
signatures (i.e. never seen on the testbed). In such cases the outcomes were empty sets
because no match (or aternative match) was found in the database.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Table 7. Results of individual tests

Trace#1 Trace#2 _
of good # of false| # of results| # of good | #of # of results
results | results |that cannot| results | false that cannot
be verified results beverified
ARP Request 0 0 0 0 0 0
ARP Retransmit |0 0 0 lo 0 0
523 678
TCP SYN (incl.57at) O 0 (incl. 151 at) O 0
TCPSYN/ACK 522 0 0 626 0 0
TCPRST/ACK [0 0 0 0 0 0
TCP Timestamp 9 0 0 15 2 0
7
TCPISN 22 2 0 (Si)ncl. 1aty 1 0
IPID 1417 121 0 2507 206 2
ICMP Echo 0 0 0 0 0 0
ICMP Info 0 0 0 lo 0 0
ICMP Mask 0 0 0 lo 0 0
ICMP Timestamp [0 0 0 0 0 0
ICMP
Unreachable 0 0 0 0 0 0
1 (anew
ICMPID SEQ 0 0 0 0 0 signature)
26 (3 new
ICMPID 0 0 2 4 0 signatures)
ICMP SEQ 0 0 0 1 0 0

When analysing Trace #2, PassiveTest_ ICMP_ID produced three new signatures for
which we could not verify the OS. Those signatures are:

1. ICMPID=other ;DF=N ;TOS=0 ;DatalLen=24 ;ConstantData=UNKNOWN ;
2. ICMPID=other ;DF=Y ;TOS=0 ;DataLen=470 ;ConstantData=UNKNOWN ;
3. ICMPID=100 ;DF=N ;TOS=0 ;Datalen=9 ;ConstantData=UNKNOWN ;

For the host with the third unknown signature, PassiveTest ICMP_ID_SEQ, which

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

examines how the ICMP Identifier and the ICM P Sequence Number vary, also found a
new signature:
1. ICMPIDClass=C ;IDInvariant=100 ;ICMPSeqClass=I ;Seglnvariant=100 ;

Some of the tests require parameter settings as described in section 3.1; these settings
appear in the first two columns of Table 8. Timeouts are in milliseconds (column 1)

59

and apply to tests of types Simulus-Response and Sample. A timeout value of “-1”
indicates that the prototype can wait indefinitely (until the end of the traffic trace) to
complete the sample. The third column indicates which fields were given aweight
value of 0 for the alternative matching signature mechanism. These settings were
determined empirically and may require changes for different environments.

As mentioned in section 3.2 describing each test, some tests contain fields for which
the values depend on the network environment. These fieldsarethe IP Timeto Live
(TTL) and the TCP option Maximum Segment Size (MSS). The signaturesin the
database contain TTL and MSS values for local hosts sharing an Ethernet link. The
look-up agorithm for these fields works in a fashion similar to the alternative

signature mechanism. If no exact match isfound, it searches the database for plausible
values. The details of the matching algorithms for the TTL and MSS are very intuitive

and are thus not presented here.

Table 8. Tests Parameters

Parameters

Fieldswith Weight O if
alternative signature
mechanism isrequired

Timeout (Ms)

sample size
(# of packets)

ARP Request
ARP Retransmit |1500
TCP SYN WIN, TCPecn
WIN, ackNb, TCPecn,
TCP SYN/ACK 2000 SYN_TCPecn,
TCP RST/ACK 2000 ackNb, TCPecn, SYN_TCPecn,
TCPISN 1000 4 val, gcd, std
IPID 1000 6
TCP T Timestamp 1 6
ICMP Echo 2000
ICMP Info 2000
ICMP Mask 2000
ICMP Timestamp [2000
ICM P Unreachable[2000
ICMPID Seq -1 18
60 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Each instance of atest is performed separately and its outcome (a set of possible Operating
Systems) is passed to an intersection module. This module manages the information coming
from all the tests and attempts to identify the set of possible OSes on which al tests agree.
The only difference between the mode verify and find is that the former checks whether the
true operating system associated with an IP addressis known, and if so, it verifiesif the
outcome of the test produces a mismatch.

Table 9 and Table 10 give the results for each individual host obtained with the prototype
running in verify mode. The IP addressesin the tables do not correspond to thereal IP
addresses. They have all been anonymized to preserve the privacy of end users and of the
campus' s dlocated IP addressrange. An IP address that appears in both traces will appear as
the same anonymized | P address across those traces. The IP addresses tested belong to hosts
being monitored and hosts with whom they have communicated. The number of 1P addresses
for which communication was sufficient to conduct at least one test is 29 in both traces. Of
these 29 IP addresses, there were 28 |P addresses for which the true OS was known, either
exactly (24/28) or approximately (4/28). There also was one |P addressin each trace with an
unknown OS.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 61

29

Table 9. Results obtained from Traffic Trace #1 for each host

Traffic Trace #1

IP addresses

Number of OSes

" Real OS Test conducted in set of OS OSes contained in set of OS match
(sanitized)
match
Other tests (including other instances of IPID tests) agreed on 26 results:
[Linux 2.4.2-2, Linux 2.4.4, Linux 2.4.4-4GB, Linux 2.4.5, Linux 2.4.7, Linux 2.4.6, Linux 2.4.8,
Linux 2.4.9, Linux 2.4.10, Linux 2.4.10-4GB, Linux 2.4.11, Linux 2.4.12, Linux 2.4.13, Linux
TCP_SYN, IP_ID, | OS MISMATCH |2.4.14, Linux 2.4.15, Linux 2.4.16, Linux 2.4.17, Linux 2.4.18, Linux 2.4.18-3, Linux 2.4.18-
TCP_ISN, due IP_ID test ® | 4GB, Linux 2.4.18-14, Linux 2.4.19, Linux 2.4.19-4GB, Linux 2.4.20, Linux 2.4.20-8, Linux
192.168.1.55 Linux 2.4.2-2 TCP_TS 2.4.21-0.13mdkK]
TCP_SYN, IP_ID,
TCP_ISN,
192.168.5.175 |Linux 2.4.18-17 ** | TCP_TS 1 [Linux 2.4.18-14]
TCP_SYN, IP_ID,
192.168.1.94 MacOS 10 TCP_TS 1 [MacOS 10.0.0]
192.168.5.67 MacOS 10 TCP_SYN, IP_ID 1 [MacOS 10.0.0]
192.168.1.69 SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, Sun0OS 5.5.1, SunOS 5.6, SunOS 5.7]
192.168.5.224 | SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]

% One IP_ID sample produced a [IPIDClass=RD, Protocol=6] signature while the true IPIDClass for protocol 6 (TCP) is either “IPIDClass=I" if
all packets belong to the same TCP session or “PIDClass=I-SD” otherwise.

% This particular kernel does not appear in the signature database. However, Linux 2.4.18-17 is a kernel update for Redhad 9.0, which has kernel
2.4.18-14 in the CD ingtalation. The database only contains the signature for 2.4.18-14.

Traffic Trace #1
Number of OSes
P adc.lr'esses Real OS Test conducted in set of OS OSes contained in set of OS match
(sanitized)
match
OS MISMATCH
TCP_SYN, IP_ID, | due to TCP_ISN*®
192.168.5.57 SunOS 5.7 TCP_ISN other tests agreed on 4 results [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]
192.168.1.106 |SunOS 5.8 TCP_SYN, IP_ID 1% [SunOS 5.8]
TCP_SYN, IP_ID,
192.168.1.97 SunOS 5.8 TCP_ISN 1% [SunOS 5.8]
TCP_SYN, IP_ID,
192.168.1.15 Windows 2000 TCP_ISN 3 [Windows 2000 standard, Windows 2000 Server standard, Windows 2000 sp4]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.159 | Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.163 | Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.191 | Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.5.148 | Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard)]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.5.162 | Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard)]

€9

% There was one ISN sample for this host. This sample produced the signature [ISNClass=RI,val=-1,gcd=2,std=6411]. The measured standard
deviation (6411) is a little lower than what we obtained from all SunOS samples in the testbed. The aternative signature mechanism was not
called upon since the signature found a match for a few OSes (a few old versions of FreeBSD and OpenBSD, along with Windows 2000 and
Windows Me).

% TCP_SYN onits own was sufficient to find OS.

2 TCP_SYN on its own was sufficient to find OS.

9

Traffic Trace #1

IP addresses

Number of OSes

- Real OS Test conducted in set of OS OSes contained in set of OS match
(sanitized)
match
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.5.12 Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.105 | Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard)]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.74 Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
other tests agreed on 9 results
OS MISMATCH | [Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000

Windows 2000

TCP_SYN, IP_ID,

due to TCP_ISN®®

sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net

192.168.1.219 sp2 TCP_ISN standard, Windows 2003 Server standard]
Windows 2000 TCP_SYN, IP_ID, [Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
192.168.3.16 sp2 TCP_ISN 4 sp3]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows 2000 sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.5.26 sp3 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.79 Millennium TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard)]
192.168.5.188 | Windows NT 4 TCP_SYN, IP_ID 4 [Windows NT 4 standard, Windows NT 4 sp3, Windows NT 4 sp4, Windows NT 4 sp6]

%There was one ISN sample for this host in the trace. This sample produced the signature [ISNClass=RlI val=-1,gcd=1,std=27607]. The measured
standard deviation (27607) is a little higher than what we obtained from the testbed for Windows 2000 machines. The alternative signature
mechanism was not called upon since the signature had found a match in the database for several OSes, including a number of versions from
FreeBSD, OpenBSD, MacOS and SunOS families. The only Windows system matching the signature was Windows Millenium.

Traffic Trace #1

IP addresses

Number of OSes

- Real OS Test conducted in set of OS OSes contained in set of OS match
(sanitized)
match
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows XP sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.80 Professional TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows XP sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.206 | Professional TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows XP sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.207 | Professional TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
TCP_SYNACK,
Linux RH 6.2, TCP_ISN,
192.168.6.92 kernel unknown % | TCP_TS, IP_ID 3 [Linux 2.2.14-5, Linux 2.2.16, Linux 2.2.20]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.3.154 | Windows TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Netware 4.11, Netware 4.11 sp9, Netware 5, Netware 5 sp6a, Netware 5.1, Netware 5.1 sp6,
outsider unknown ICMP_ID 7 Netware 6 sp3]
Table 10. Results obtained from Traffic Trace #2 for each host
Traffic Trace #2
IP addresses Number of OSes
" Real OS Test conducted in set of OS OSes contained in set of OS match
(sanitized) match

q9

» The only information we had about this host was the Linux distribution (i.e. Red Hat 6.2). The kernel version we tested within this Linux

distribution was 2.2.14-5 (see Table 3), which was the basis kernel at installation of Red Hat 6.2.

99

Traffic Trace #2

IP addresses

Number of OSes

- Real OS Test conducted in set of OS OSes contained in set of OS match
(sanitized)
match
TCP_SYN, IP_ID,
TCP_TS,
ICMP_ID,
192.168.5.21 Linux 2.4.18-14 ICMP_SEQ 1% [Linux 2.4.18-14]
other tests (including other instances of the test IP_ID) agreed on 11 results:
TCP_SYN, IP_ID,
TCP_ISN, OS MISMATCH | [Linux 2.4.0, Linux 2.4.2-2, Linux 2.4.4-4GB, Linux 2.4.8, Linux 2.4.12, Linux 2.4.17, Linux
192.168.1.55 Linux 2.4.2-2 TCP_TS due to IP_ID® | 2.4.18, Linux 2.4.18-4GB, Linux 2.4.19, Linux 2.4.19-4GB, Linux 2.4.10-4GB]
TCP_SYN, IP_ID,
192.168.1.94 MacOS 10 TCP_TS 1 [MacOS 10.0.0]
192.168.1.69 SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]
192.168.5.224 | SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]
192.168.1.50 SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]
192.168.1.106 |SunOS 5.8 TCP_SYN, IP_ID 1 [SunOS 5.8]
TCP_SYN, IP_ID, [FreeBSD 4.2, MacOS 9.2.1,NetBSD 1.3.1, NetBSD 1.3.2, NetBSD 1.3.3, NetBSD 1.3,
192.168.1.97 SunOS 5.8 TCP_ISN 11 OpenBSD 2.8, QNX RTP 6.1, SunOS (Intel) 5.8, SunOS 5.8, SunOS 5.9]
TCP_SYN, IP_ID,
192.168.1.150 | Windows 2000 TCP_ISN 3 [Windows 2000 sp2, Windows Millennium standard, Windows 2000 standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.158 | Windows 2000 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]

% TCP_TSwas sufficient to pin point the OS.

% One IP_ID sample produced a [IPIDClass=RD, Protocol=6] signature while the true IPIDClass for protocol 6 (TCP) is either “IPIDClass=I" if

all packets belong to the same TCP session or “PIDClass=I1-SD” otherwise.

L9

Traffic Trace #2

IP addresses
(sanitized)

Real OS

Test conducted

Number of OSes
in set of OS
match

OSes contained in set of OS match

192.168.1.159

Windows 2000

TCP_SYN, IP_ID

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.163

Windows 2000

TCP_SYN, IP_ID

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.191

Windows 2000

TCP_SYN, IP_ID

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard)]

192.168.5.148

Windows 2000

TCP_SYN, IP_ID

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.162

Windows 2000

TCP_SYN, IP_ID

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.12

Windows 2000

TCP_SYN, IP_ID

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard)]

192.168.1.105

Windows 2000

TCP_SYN, IP_ID

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard)]

192.168.1.74

Windows 2000

TCP_SYN, IP_ID

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

89

Traffic Trace #2
Number of OSes
1P adc_lr_esses Real OS Test conducted in set of OS OSes contained in set of OS match
(sanitized)
match
other tests agreed on the following results:
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows 2000 TCP_SYN, IP_ID, | OS MISMATCH | sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.219 |sp2 TCP_ISN due to TCP_ISN* | standard, Windows 2003 Server standard]
Windows 2000 TCP_SYN, IP_ID, [Windows 2000 sp2, Windows Millennium standard, Windows 2000 sp3, Windows 2000 Server
192.168.3.16 sp2 TCP_ISN 4 standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows 2000 sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.189 |sp3 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard)]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows 2000 sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.5.26 sp3 TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
192.168.5.188 |Windows NT 4.0 |TCP_SYN, IP_ID 4 [Windows NT 4 standard, Windows NT 4 sp3, Windows NT 4 sp4, Windows NT 4 sp6]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows XP sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.80 Professional TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
[Windows 2000 standard, Windows 2000 sp2, Windows 2000 sp3, Windows 2000 sp4,
Windows XP TCP_SYN, IP_ID, Windows XP Home, Windows XP Professional, Windows Net standard, Windows 2003 Server
192.168.1.206 | Professional ICMP_ID 8 standard]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
Windows XP sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.1.207 | Professional TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]

% There was one ISN sample for this host in the trace. This sample produced the signature [ISNClass=RI,val=-1,gcd=1,std=27079]. The measured
standard deviation (27079) is a little higher than what we obtained from the testbed for Windows 2000 machines. The dternative signature
mechanism was not called upon since the signature had found a match in the database for several OSes. The only Windows system matching this
signature was Windows Millenium.

Traffic Trace #2
Number of OSes
P addr_esses Real OS Test conducted in set of OS OSes contained in set of OS match
(sanitized)
match
Linux RH 6.2 TCP_SYNACK,
gkernel unknown) |IP_ID, TCP_ISN, [Linux 2.2.7, Linux 2.2.12-20, Linux 2.2.13, Linux 2.2.16, Linux 2.2.20, Linux 2.2.24, Linux
192.168.6.93 3 TCP_TS 9 2.4.2-2, Linux 2.4.17, Linux 2.4.18]
[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
192.168.3.154 | Windows TCP_SYN, IP_ID 9 standard, Windows 2003 Server standard]
the set of possible OSes EXCLUDES Linux 2.4.2-2, Linux 2.4.4-Linux 2.4.21, Novell Netware,
192.168.15.15 | unknown IP_ID 123 OpenBSD 2.5-3.3, and Windows 95/98/NT

* The only information we had about this host was the Linux distribution (i.e. Red Hat 6.2). The kernel version we tested within this Linux
o distribution was 2.2.14-5 (see Table 3), which was the basis kernel at installation of Red Hat 6.2.

©

6. Development State of the Prototype

70

The passive OS detection prototype is one of a set of tools developed at CRC for
network monitoring and analysis. Although the prototype works as a standalone
application, it was also integrated into two in-house information gathering tools: a
Network Mapping Tool [27] that actively scans the network to discover topology and
information available about the network components and a Passive Network
Monitoring Tools [28] that gathers similar information without sending any packets.

The standal one version comes with three modes of operation: learn, find, verify. All
modes can run on live traffic or pre-recorded traffic traces. The purpose of the learn
mode is to collect the signature from an environment in which the association between
OS and IP addresses is known. The traffic traces used to learn the signature have been
archived. Thereforeif atest ismodified, the signaturesfor all OSestested can be
updated according to the change made. Moreover, as new OS versions are being
released, procedures are in place to install and test the new systems in order to update
the database.

The find mode is the mode used on an environment for which we have little to no
knowledge. It allows acquiring OS information about the computers connected to the
network. The verify mode was devel oped for testing purposes. The only difference
between the verify mode and find mode is that the former checks whether the true
operating system associated with an IP address is known, and if <o, it verifiesif the
outcome of the test produces a mismatch. This mode istypically used on live traffic or
on traffic traces different than those from which the signatures were learned. As
displayed in Figure 3, the standalone version includes a Graphical User Interface
(GUI) to select the traffic trace or network interface to monitor and to select the tests
to activate. Parameters for Stimulus-Response and Sampl e tests (see section 3.1) can
be changed from that GUI. The results are not displayed graphically and are sent to a
database instead.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

& Passive 0S Detection

| Browse | pirectory ony

Mode Source
ClLearn @ File: |
) Fing O Live
® Verify

Tests

[v] ARP Request

[] HTTP User-Agent
[v] TTL

[v] SYN

[v] SYN ACK / RST ACK
[v] ICMP Echo

[¥] ICMP Info

[V] ICMP Mask

[] ICMP Time Stamp
[¥] ICMP Unr;

Timeout(ms) [z000 |
Timeout(ms) [z000 |
Timeout(ms) [z000 |
Timeout(ms) [z000 |
Timeout(ms) [z000 |
Ti 2000 |

[#] ICMP ID Seq

(@ ICMP ID Seq Stack [_] Check ICMP Data
(Z1 ICMP ID Seq Mo Stack

Timeoutims) |1 |samplesize [168 |Leam:1,18] Verify or Find[1,8]
[v] TCP Time Stamp Timeoutims) -1 |samplesize (6 |Learr[1,6 Verifyar Find:-1,6
[Pof
[v] Ettercap
[IPID ® IPID Stack

' IPID Mo Stack

2 NUlIPID No Stack

Timeout(ms) |1 |samplesize [6 |Leam:[1,6] Verify or Find:[1000,6]
[v] ISN Timeoutims) -1 |samplesize |6 |Learr[-1,6] Verifyor Find:[1000,4]
[v] ARP Retransmit Timeout{ms) (4000 |Learn:4000 Verity of Find: 1500
Logging method Adjust signatures Storage method Intersection method Signature match method
(@ Database [l Adjust MSS () OSInformation @ Normal () Normal
) Debug window [v] Adjust TTL (® OSInformation Verificator) Prolog (@ Binary Weigth

! None

Excluded IPs

List the networks you do not wish to test,

Walid entry formats are
N0

xxxxinnVhere nnis 0..32 (CIDR notation)

EXREHM.M.M.m

‘ add --> || remaove H remaove all ‘

Mo packets being read

JEE |

| start Passwe 0S Detection | |

Start AutoProcess Passive 0S Detection |

The two in-house Network Monitoring Tools provide the OS information and much

Figure 3. Test selection menu

more viaagraphical user interface. When called from these tools, the OS
identification tool runsin find mode. Figure 4 shows the connectivity and the
description of diverse network components discovered using the active Network
Mapping tool. Inthe left panel, computers and network devices are represented using
intuitive icons. The icon indicates the OS family identified. The right pane displays

more detailed information concerning the selected system (a Windows systemin this

case). The GUI included in the Passive Network Monitoring Tool is displayed in
Figure 5. It provides an example of what an analyst would see once the passive

monitoring tool has been running for a period of time. The screenshot shows several

computers, arouter, and aswitch. Theright panel displays more detailed information
concerning the selected system (a Novell system in this case). The prototype is

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

71

72

designed to display information in a summarized manner for users who are primarily
interested in aggregated information, but aso allows analysts to examine in more
detail the performance of individua techniques. Techniques used in these tools
include the capability to discover active nodes, operating systems, the node' s rolein
the network, system uptime, the services offered, the protocol s supported, |P network
interface configuration and the network topology at different level of specification
(physical, logical). The focusis on developing rdiable techniques and mitigating the
shortcomings found in available tools. More information on the capabilities of the
Network Mapping Tool and the Passive Network Monitoring tool can be found in [27]
and [28].

[FElsetwork: security Anatyser L =lelx
File View Tool Hela

EIREC]
Tools

& E Discoves tetwork
i
‘Start Trafic Anabyser

SI0P Stop Trafic Anadysar

(=) Ruset Gragn

Purts | SMBifD |
Foi_ | Frotcol| Stale | Senwice
39 o open nelbios..

Figure 4. CRC’ s Active Network Mapping Tool GUI

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

(T 08, Siateary BEVERAL GEVERAL 31108808 Ful (ugl)

gl g 22 BIEIZI|E

40T_DETES
i

" (% 0 1 0 1 1 00 7 09 0 1 0 0 (2 (208 @ 1

Figure 5. CRC’ s Passive Network Monitoring Tool GUI

The structure of the code alows additional tests to be included easily. A new passive
test named PassiveTest IP_TTL has been developed to identify OSes that send
different TTL values depending on the type of packet to transmit.

PassiveTest |IP_TTL is of type Singleton and monitorsall IP traffic. While most OSes
alow the default TTL value to be changed, some OSes override this value for certain
types of packets. For example Linux systems use avalue of 64 in a datagram carrying
a TCP segment, unless the RESET TCP flag isturned on, in which case, the TTL value
is255. PassiveTest IP_TTL may identify computers for which the overridable default
value has been changed.

Recent work within the team has focused on devel oping a Scenario-Driven Intrusion
Detection System (SDIDS) based on temporal logic [29]. The SDIDSis an evolution
of the Passive Network Monitoring Tool. This system has the ability to identify attack
scenarios involving multiple packets and to passively gather information about the
monitored network, providing thereby context with intrusion alarms. Traditional
Intrusion Detection Systems tend to suffer from a high false-positive rate. Bringing
context to intrusion detection can help address the false positive problem.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 73

7. Limitations and Future Work

7.1 Limitations

7.1.1 Fingerprinting countermeasures

74

Whether they are passive or active, fingerprinting methods can be defeated.
Filtering devices can be configured to reject or silently discard certain types
of packets. Certain fields of packets transmitted may also be changed without
breaking communications. These changes can take place at the endpoint
transmitting the packets or at devices along the path. A few deception tools
were developed to specifically defeat known OS identification tools. IP
Personality is an example of a popular endpoint solution for Linux systemsto
defeat nmap by impersonating a different OS[30]. Certain firewalls and
intrusion protection systems advertise having fingerprinting countermeasure
functionality (e.g. Sygate’ s Personal Firewall [31]). However, this appearsto
be centred on the more usual practice of dropping abnormal packets such as
those used by nmap. Therefore such solutions are less effective against
passive fingerprinting techniques based on normal traffic.

While making custom changes to the TCP/IP stack is easier to accomplish on
open source platforms, minor modifications (such as changing default values
for configurable variable) can be done on virtually any OS. When the stack
imitates the behaviours of an existing platform, the deception method is more
likely to go undetected. Thisis because a plausible signature may be found in
the database and thus lead to the wrong conclusion. In contrast, deception
attempts based on producing unusual signatures are likely to draw attention.
Experienced analysts may “reverse-engineer” the process or smply pay
closer attention to other traffic in order to deduce the original OS.

M. Smart et a. proposed the use of a protocol scrubber to defeat TCP/IP stack
fingerprinting [32]. Theintended use of the fingerprint scrubber isto
transparently interpose between the Internet and the network under

protection. The goal of the tool is not to prevent fingerprinting when done
internally, but rather to prevent OS information |eakage to the exterior world.
The OpenBSD packet filter is another example of a solution that allows end-
nodes or gateways to do traffic normalization with scrub rules [33].

Simple mechanisms have been implemented in the prototype to allow
individual test to look for alternative signatures when no perfect match is
found. Thistypicaly counters simplistic attempts to defeat fingerprinting. In
practice, we found that it isin the variety of the tests that OS information can
leak through despite the attempts to defeat OS detection. Because the
approach relies on severa individua tests conducted of different protocols, it

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

takes much effort to defeat al tests. One has to introduce changes in enough
places to make the deception plausible.

A higher-level module in the prototype combines the outcomes of the teststo
obtain a set of the most plausible OS versions, those on which all test agree.
The prototype allows the analyst to browse the individual test results. Thisis
especialy useful when the test disagree on the set of possible OSes. Based on
experimentsin the lab where we used packet crafters and custom deception
measures, we believe that an experience analyst can in general determine
which test has failed and thus make an educated guess about the OS. In order
to automate the management of discrepancies and corroborative elements,
more effort would be required to enhance the correlation module. Thiswould
further increase the level of confidence in the fingerprinting techniques.

7.1.2 Network Conditions and Configuration

Tests that rely on matching stimulus and response and tests based on
capturing samples of packets produced one after the other are sensitive to
packet loss. For tests relying on samples, an effort was made to make the
tests somewhat resilient to packet loss or packets arriving out of order. For
tests based on stimulus and response, the problem arises only when the
signature includes a check for responsiveness. Otherwise, the incomplete pair
issimply discarded and thus will not produce a misleading result. In general,
missing packets when doing passive fingerprinting is not as critical asin the
context of intrusion detection. The fingerprinting device may get another
chance to perform atest on subsequent packets. Theintrusion detection
system on the other hand is expected to remain effective at all times.

Packet loss may be caused by network congestion but may also be dueto
incompleteness of the network coverage. Improper coverage may not only
ater performance of certain Sample and Stimulus-Response types of tests, but
may also prevent hosts connected to the protected network from being
detected. Network devices such as switches, routers and firewalls will limit
any one sensor’ s view of the entire network. Asymmetric routing topology
and load ba ancing devices are particularly troublesome. Network Address
Trandation (NAT) technology makes all traffic from/to the protected network
appear to be coming from or destined to one node, making difficult the
identification of hosts behind the NATing device. Based on the topology and
the coverage level desired, the locations and number of sensors required may
vary greatly from one network to another. The optimum sensor deployment
strategy isin general difficult to determine. It typically involves making
decision to balance the cogt, the load imposed on sensors, the ease of set-up
and maintenance, and the monitoring coverage.

Two tests, PassiveTest TCP_Timestamp and PassiveTest ARP_Retransmit,
are sensitive to delays. A variation in the round trip time due to network
condition may alter the performance of those tests. Another limitation is due
to the passive methodol ogy itself. It may be impossible to determine whether

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 75

alack of responseis attributed to configuration of the host, improper network
coverage, or the presence of afiltering device. Moreover, the host not
responding may be down or may not even exist. For atest based on
determining whether or not a response was transmitted, the result isvalid only
in the first case (i.e. dueto configuration of OS). Because the prototype
currently has no mechanism to discriminate between these cases, tests based
on responsiveness are likely to produce unsuitabl e results.

7.2 Future Work

This effort has focused on developing the individual tests and implementing those tests
in a prototype capable of performing passive OS detection on live traffic or pre-
recorded traffic traces. The prototype was designed to ease the signature learning
process as well as the verification (evaluation) process. This allowed observing certain
cases that had not been foreseen. Many tests would benefit from a number of
adjustments as summarised in Table 11 of an upcoming section. We discuss herea
couple of related research activities that would complement the work we have done.

A comprehensive analysis of the signature database would be an interesting follow-up
of thiswork. For instance, the signature database could be analyzed with the intent of
determining, when possible, the combination of tests required to isolate a given
version of an operating system.

The signatures were collected from systems typically used as servers and workstations
(PCsand laptop). In environments where computers are not locked-down®, end-users
are likely to change configuration and add or remove new systems without prior notice
to network administrators. Because of this factor, the automated capability to discover
operating systems of end nodes is particularly useful. Nonetheless, end-nodes are not
the only TCP/IP stacks identified by fingerprinting tools. Routers, switches, printers,
firewalls, web cameras, and even game consoles are identifiable. A desirable update
for the database would include other types of networked components.

We are planning on using a similar passive fingerprinting approach to identify various
virtual private network (VPN) implementations. A useful addition to the monitoring
toolset would be the ability to identify through passive techniques the characteristics of
VPN implementations such as IPSec and other similar protocols based on both
proprietary and open source systems. It may be possible to identify specific
implementations associated with versions of operating systems and implementationsin
network appliance devices.

The monitoring tools that have been devel oped by the Network Security Research
group at CRC have been tested in a“wired” environment in the lab, and within some
non-lab environments, using IPv4. With the potential rapid deployment of wireless

¥ Locked down computers have hardware or software configurations which prohibit
users from modifying the configuration (e.g. preventing installation of new software).

76 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

LANSs and other network technologies, such IPv6, including associated network
services, the active/passive tools must be readied for use in these environments. To be
able to use these toolsin aWLAN environment (802.11 a/b/g), some modifications
may be necessary. However, the experience gathered in building the tools and the
algorithms used by the tools should be utilized in the wireless and |Pv6 environments.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 77

8. Conclusion

78

The Network Security Research Group at the Communication Research Centre (CRC)
has developed a series of tests for passively detecting operating systems, and has
implemented a prototype software tool as a proof of concept. For al the tests
implemented in the passive tool, the approach taken was based on the anaysis of
packet headers at the data-link, network, and transport layers, thus the tool does not
rely on access to application data. Over a dozen tests have been developed to analyse
headers of packets seen on a network. The tests are conducted on headers of various
protocols: ARP, IP, ICMP, UDP, and TCP. The prototype goes beyond analysis of
individual packet commonly used in open source and commercial operating system
identification tools. Because certain packets have influence on subsequent packets,
some information can only be gained when related packets are analysed together. The
use of lightweight state-aware mechanisms to derived signatures for operating systems
isaunique approach. A test monitorsthe traffic for certain types of packets, produces
a signature based on the values seen in the packets monitored, and does alookup in a
database to obtain alist of operating system associated with that signature.

The various tests devel oped were implemented in a JAV A prototype. On top of the
individual tests, the prototype includes mechanisms that manage and combine the
outcomes of all testsin order to produce the most likely subset of OS possibilities
associated with an IP address. The prototype has different modes of operation
allowing it to recognize new signatures, verify existing knowledge, or identify OSes of
unknown computers on an unknown network. All modes can run on live traffic or pre-
recorded traffic traces.

This document has described the OS fingerprinting technigues included in the passive
operating system identification prototype. In section 2, we provided background on
the state of the work on active and passive operating system identification. We gave a
detailed description of the header fields of the IPv4 TCP/IP protocol suite that are
useful in OS fingerprinting. In section 3, we described each of the individual tests
developed for the prototype. As described in section 4, the signatures were collected
from a private testbed. A variety of operating systems were installed and tested
systematically in order to capture the signatures. The approach achieved uniformity in
the testing of open source and non-open source operating systems. The signatures
collected areincluded in Annex A. Section 5 discussed the mechanisms that combine
the outcomes of individual tests together. Section 5 also presented the results obtained
from a small scale monitoring experiment on a campus network. Certain signatures
observed during thistrial were different from those contained in the database. This
was expected because of the difficulty of controlling elements of influence, such as
application level software, when collecting the signatures. While the discrepancies
sometimes prevented the program from finding perfect matches, the alternative
signature lookup mechanisms were often able to correctly identify the OS nonethel ess.
Section 6 discussed the current state of the prototype and its integration to other
monitoring tools developed at CRC. Lastly, limitations and desirable follow-up
activities were described in section 7.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

The tests are summarized in the following table, with their respective types and known
problems and/or limitations. This table also contains some ideas for enhancement.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 79

08

Table 11. Comments on each test

Name of Test Type Comments Known problems and proposed enhancements

PassiveTest TCP_SYN Singleton | Almost identical to pOf's We believe that the TCP Window size field and the value of the
SYN test in pOf v2. Window Scale TCP option of some OSes may vary depending

on the application involved. The signatures were produced
using alimited number of application clients. While the
signatures give accurate results for most common services, we
recommend that the signature collection process be revised to
test a greater variety of application clients. Until then, the
alternative signature mechanism helpsin searching for non-
perfect match.

PassiveTest ARP_Requests Singleton | ARPisnot routed; therefore | Based on traffic observed on a network different than the
thistest requires sharing a testbed, we believe that there could be more categories of
link-layer with the hosts possible values for the Target Hardware address than those
under observation. anticipated.

PassiveTest TCP_ISN Sample Morereliableif al traffic Evaluation performed on real user traffic clearly indicates that
transmitted by the host under | the samples produced in the testbed to generate the signatures
observation can be captured. | areinsufficient to capture all possible responses. We

recommend that the signature collection process be revised.
More samples are required, and when possible, the TCP/IP stack
implementation (program code) of open source OSes should be
examined. Moreover, the algorithms that decide whether or not
numbers are randomly generated are based on nmap program
and are smplistic. Thus, the algorithms could be improved.

PassiveTest_TCP_TS Sample In contrast with other Sample | As an enhancement, a subtest of type Singleton could be defined

test, this one can tolerate loss
of packets.

to observe the zeroing behaviour in SYN and SYN/ACK
packets. PassiveTest TCP_TS could then be modified to
examine the update rate on all TCP packets.

18

Name of Test Type Comments Known problems and proposed enhancements
PassiveTest IP_ID Sample Morereliableif dl traffic As described in section 3.2.4, we observed unanticipated
transmitted by the host under | behaviour for Solaris and for Mac OS prior to Mac OS X. The
observation can be captured. | results (signatures) produced for these systems sometimes
appear contradictory. Improving the consistency of the
classification algorithm would help improving the accuracy of
this test.
subtest Singleton | Thistest removes from the Some OSes get two different signatures for a given type of
PassiveTest Null_IP_ID sampling process of packet. In some cases the OS may send a null value on reboot,
PassiveTest_IP_ID the but nonzero values in subsequent packets. In some other casesit
packets having an IP ID of is because the stimulus influences the IP ID value in the
zero. Thistestisaso response (refer to section 3.2.4 for comments on TCP ACK
efficient at identifying packets transmitted by Linux in response to FIN/ACK packets).
certain OS. A Singleton test cannot model such behaviour. Perhaps the test
type should be revisited to accommodate the few exceptional
Cases.
subtest Stimulus- | Removes from the sampling
PassiveTest Echo IP_ID Response | process of

PassiveTest_IP_ID the
packets having an IP ID of
zero. Also efficient at
identifying certain OS.

Z8

Name of Test Type Comments Known problems and proposed enhancements
PassiveTest ARP_Retransmit | Sample ARP requests are not routed. | The current implementation listens for a sequence of identical
This test therefore requires ARP requests. The implementation assumes, without further
sharing alink-layer withthe | checks, that these identical requests are retransmissions and that
target. Thistestisalso the ARP module itself produces these retransmissions. As
sensitive to delays introduced | described in section 3.2.6, this assumption does not aways hold
by network congestion. and so the test may produce false results. While monitoring only
ARP requests provides a clear advantage since these packets are
broadcasted, monitoring related packets (e.g. ARP replies) may
prove to be useful. We recommend further investigation of the
use of the Stimulus-Response matching algorithm to ensure that
the sample consists only of unanswered ARP requests.
PassiveTest ICMP_ID_SEQ | Sample Requirements on the sample | The database does not currently include signatures for most
make thistest less likely to Novell systems. Further examination of Novell ping utility is
be performed. required to understand the behaviour. Changesto the signature
subtest Sample Has more chances to be computation agorithm should then be made accordingly.
PassiveTest ICMP_SEQ performed than
PassiveTest ICMP_ID_SEQ.
subtest Singleton | Has more chancesto be

PassiveTest ICMP_ID

performed than
PassiveTest_ICMP_ID_SEQ.

€8

Name of Test

Type

Comments

Known problems and proposed enhancements

PassiveTest_ TCP_SYNACK

Stimulus-
Response

Thistest reveals that taking
the TCP options of the SYN
into account helps gaining
precision. Thisiswhat is
lacking from most passive
OS detection tools such as
pOf v2 and ettercap.

It appears that the WIN value of SYN/ACK produced by certain
OSes may also depend on:

- the network service running (port),

- thewindow size advertised in the stimulus and

- the TCP window scale option of the stimulus.

We therefore recommend that the signature collection process be
revised to test a greater variety of application services and that
the signature calculation be modified to measure the influence of
the items listed above. Moreover, when examining the WIN
value, the program tries to determine if the valueis a multiple of
the MSS value (TCP option), if not it then examinesif itisa
multiple of the MSS advertised in the stimulus. It appears that
the check should be done in reverse order. Refer to Table 20 for
the comment concerning FreeBSD. This comment holds for
Mac OS X, OpenBSD, Windows, SunOS 5.8 and 5.9, and
NetBSD prior to 1.3 as well.

PassveTest TCP_RSTACK

Stimulus-
Response

The influence of the SYN
packet is clearly seen. Some
OS versions echo certain
fieldsin the RST/ACK. The
program currently checks for
echoing behaviour on the
DF, TTL, WIN, and TCPopts
fields.

PassiveTest ICMP_Unreach

Stimulus-
Response

Performs well at providing
small subsets of possible OS
versions.

¥8

Name of Test Type Comments Known problems and proposed enhancements
PassiveTest ICMP_Echo Stimulus- | The stimulus being Thetest can be easily modified to obtain the same level of
Response | monitored is an abnormal precision based on any pair of Echo Request/Reply messages.
packet, which makes this test
lesslikely to be performed.
PassiveTest ICMP_Info Stimulus- | It would be preferableto
Response | ensure that the target is up
before concluding to a non-
response from this host.
PassiveTest ICMP_Mask Stimulus- | It would be preferableto
Response | ensure that the target is up
before concluding to a non-
response from this host.
PassiveTest ICMP_TS Stimulus- | It would be preferableto
Response | ensure that the target is up

before concluding to a non-
response from this host.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]
[12]

[13]

[14]

[15]

tcpdump program, an open source tool for analysing packets originally developed at the
Lawrence Berkeley National Lab. Thetool can be downloaded from
http://www.tcpdump.org.

F. Veysset, O. Courtay, O. Heen, “New Tool and Technique for remote Operating
System Fingerprinting”, April 2002. This document and the ring program were
available originally at www.intranode.com/pdf/techno/. Any reference to ring has now
disappeared from this site, however, a new version of ring (ringv2) can be obtained
from http://ringv2.tuxfamily.org/index.html.

Concept, “ OS Detection with ARP”, Napalm e-zine, Issue 6, July 2000. Article can be
found at http://www.defcon.tv/mag/napal m/napalm-6.txt. induce-arp (the tool
implementing these techniques) can be downloaded from severa sites, in particular
from http://www.packetstormsecurity.org/UNIX/misc/induce-arp.tgz.

F. Yarochkin, “Remote OS detection via TCP/IP Stack FingerPrinting”, October 18,
1998, available at www.insecure.org/nmap/nmap-fingerprinting-article.html. Nmap
program is available at www.insecure.org /nmap/nmap_download.html.

queSO program, a discontinued active OS fingerprinting tool by Savage, can till be
downloaded from several sites, in particular from
http://www.phreak.org/archives/ftp.cerias.purdue.edu/pub/tool s'unix/scanners/queso/.
The original homepage (http://www.apostols.org/) was teared down years ago.

O. Arkin, F. Yarochkin, “X remote ICMP based OS fingerprinting techniques’, August
2001. The paper and Xprobe program can be download from http://www.sys-
security.com/html/projects/X.html.

O. Arkin, “ICMP Usage in Scanning”, June 2001, available at http://www.sys-
security.com/html/projects/icmp.html

nmap-hackers archive mailing list, http:/lists.insecure.org/lists/nmap-hackers/.
Communications are indexed per years.

pOf program, a passive OS fingerprinting tool by Micha Zalewski and maintained by
William Stearns. The tool can be downloaded from

http://Icamtuf .coredump.cx/pOf.shtml

Ettercap program, a multipurpose sniffer/interceptor/logger for switched LAN. It
supports severa active and passive features for network and host analysis. thetool can
be downloaded from http://ettercap.sourceforge.net/.

J. Nazario, “Passive System fingerprinting using Network Client Applications’,
November 27, 2000, available at http://www.crimel abs.net/docs/passive. pdf

P. Almquist, RFC 1349: “Type of Servicein the Internet Protocol Suite”, status:
proposed standard, July 1992, available at http://www.ietf.org/rfc/.

K. Nichols, S. Blake, F. Baker, D. Black, RFC 2474: “Definition of the Differentiated
Services Field (DS Fied) inthe IPv4 and IPv6 Headers’, status: proposed standard,
December 1998, available at http://www.ietf.org/rfc/.

K. Ramakrishnan, S. Floyd, D. Black RFC 3168: “The Addition of Explicit Congestion
Notification (ECN) to IP", status: proposed standard, September 2001, available at
http://www.ietf.org/rfc/.

J. Postel, RFC 791: “Internet Protocol”, status: standard, September 1981,
available at http://www.ietf.org/rfc/.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 85

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

86

J. Postel, RFC 792: “Internet Control Message Protocol”, status. standard,
September 1981, available at http://www.ietf.org/rfc/.

W. Richard Stevens, “TCP/IP Illustrated”, Volume 1: The protocols, Addison-
Wesley, 1994.

J. Postel, RFC 793: “ Transmission Control Protocol”, status. proposed standard,
September 1981, available at http://www.ietf.org/rfc/.

B. McDanel, Beyond Security Ltd, “TCP Timestamping - Obtaining System Uptime
Remotely”, March 2001. Article can be found at the SecuriTeam.com web site
http://www.securiteam.com/securitynews/SNPOC153PI .html

M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, RFC 2018: “ TCP Selective
Acknowledgement Options’, status: proposed standard, October 1996, available
at http://lwww.ietf.org/rfc/.

R. Braden, RFC 1122: “Requirements for Internet Hosts - Communication
Layers’, status: standard, October 1989, available at http://www.ietf.org/rfc/.
dethy, “ Techniques To Validate Host-Connectivity”, whitepaper sent to
bugtrag@securityfocus.com mailing list, January 2001. Archive available at
http://lists.insecure.org/lists/bugtrag/2001/Jan/0218.html.

VMWare's Frequently Asked Questions (FAQ) website. Available at
http://www.vmware.com/products/desktop/ws_fags.html

Virtual PC software from Connectix. Information about productsis available at
http://www.connectix.com/products/vpcsw.html

Mac-on-Linux open-source software from Ibium HB. Information and
downloads available at http://www.maconlinux.org

hping2 program, a packet crafter/analyser tool by Salvatore Sanfilippo, available
at http://www.hping.org/

F. Massicotte, T. Whalen and C. Bilodeau, “Network Mapping Tool for Real-
Time Security Analysis’, NATO/RTO Symposium on Real-time Intrusion
Detection, Lisbon Portugal, May 2002. Document available at
ftp://ftp.rta.nato.int/PubFull Text/RTO/MP/RTO-MP-101/M P-101-12.pdf

Annie De Montigny-Leboeuf, Frédéric Massicotte, “ Passive Network Discovery
for Real Time Situation Awareness’, NATO/RTO Adaptive Defencein
Unclassified Networks, Toulouse France, April 2004. Document available at
ftp://ftp.rta.nato.int/PubFull Text/RTO/MP/RTO-MP-1ST-041/MP-1ST-041-
14.pdf

Mathieu Couture, Béchir Ktari, Frédéric Massicotte, Mohamed Mgjri, “A
Declarative Approach to Stateful Intrusion Detection and Network Monitoring”,
2nd Annual Conference on Privacy, Security and Trust, Fredericton, New
Brunswick, Canada, October 2004. Available at

http://dev.hil.unb.ca/ Texts/PST/pdf/couture. pdf

IP Personality, apatch for Linux kernel 2.4 to impersonate TCP/IP stack of other
operating systems, by Gaél Roualland, available at http://ippersonality.sourceforge.net/
Sygate Personal Firewall, Product Information/Features and Benefits,
http://smb.sygate.com/products/ pspf/whatsnew_pspf.htm

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

[32] M. Smart, G. R. Malan, and F. Jahanian, "Defeating TCP/IP stack fingerprinting," in
Proceedings of the 9th USENIX Security Symposium, August 2000. Available at
http://www.usenix.org/publications/library/proceedings/sec2000/smart.html

[33] pf.conf(5) Manual Page, OpenBSD Programmer’s Manual for the packet filter
configuration file. OpenBSD Manua Pages can be browsed from
http://www.openbsd.org/cgi-bin/man.cgi

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

87

Annex A: Collected Signatures

This Annex provides the signatures collected from the testbed for all tests described in this
document. Asdescribed in section 4.2, each test is concerned with two tables. One table
contains the distinct signatures and in which each distinct signature is associated with a key
identifier. The OS associations are stored in the other table. Each OSinthistableis
associated to one or more signatures by the mean of the key identifiers. The tables below are
the results of queries made to that database, where OSes sharing a common signature have
sometimes been regrouped to reduce the size of the tables. Footnotes have been added on
Some occasions to comment on certain peculiar behaviours.

Table 12. PassiveTest TCP_SYN

PassiveTest_TCP_SYN

0s DF TTL WIN | TCPecn TCPopts
BEOS 5 N 25512288 M@1460
FreeBSD 2.0.5, 2.1.0 N 6416384 M@1460NW@ONNTNNC.New
FreeBSD 2.1.5,2.1.6,2.1.7.1,2,2,0,2.2.1, 2.2.2,
2.2.5,2.2.6,2.2.7,2.2.8 Y 6416384 M@1460NW@ONNTNNC.New
FreeBSD 3.0, 3.1, 3.2,3.3,3.4,35.1 Y 6416384 M@1460
FreeBSD 4.0,4.1,4.1.1,4.2,4.3 Y 6416384 M@1460
FreeBSD 4.4 Y 6416384 M@1460NW@ONNT
FreeBSD 4.5 \4 6465535 M@1460NW@INNT *
FreeBSD 4.6,4.6.2,4.7, 4.8 Y 6457344 M@1460NW@ONNT
FreeBSD 5.0, 5.1 Y 6465535 M@1460NW@1NNT
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 64512 M@1460
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5, 2.2.5-15,
2.2.6,2.2.7,2.2.8,2.2.9 Y 6422(MSS) M@1460STNW@0
Linux 2.2.10,2.2.11, 2.2.12, 2.2.12-20, 2.2.13,
2.2.14,2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17,
2.2.18,2.2.19,2.2.20,2.2.21,2.2.22, 2.2.23,2.2.24 Y 6422(MSS) M@1460STNW@0
Linux 2.2.16 (S.u.S.E) Y 6422(MSS) M@1460STNW@0
Linux 2.2.16 (S.u.S.E) Y 6432767 M@1460STNW@0
Linux 2.2.18 (S.u.S.E) Y 6422(MSS) M@1460STNW@0
Linux 2.2.18 (S.u.S.E) Y 6432767 M@1460STNW@0
Linux 2.2.19 (Debian) Y 64[11(MSS) M@1460STNW@0
Linux 2.2.20-idepci Y 64[11(MSS) M@1460STNW@0
Linux 2.4.0,2.4.1,2.4.2,242-2,243,244,24.4-
4GB, 2.4.5,2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12,2.4.13,2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 6414(MSS) M@1460STNW@0
Linux 2.4.10-4GB Y 64/4(MSS) M@1460STNW@O0 *°
Linux 2.4.10-4GB \ 6414(MSS) M@1460STNW@1

® FreeBSD 4.5 initiates a connection with Window size and Window scale values
identical to what FreeBSD 5.0 and 5.1 use (destination port tested for all FreeBSD are
22, 23 and 21)

% Linux 2.4.10-4GB sends a Window scale of O from the telnet client but sends a
Window scale of 1 using the ftp client.

88 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_ TCP_SYN

oS DF TTL WIN TCPecn TCPopts
MacOS 7.5.3,7.5.5,7.6,7.6.1,8.0,8.1 Y 255(16616 M@1460W@0L
MacOS 9.0 N 25532768 M@1460W@ON
MacOS 9.1,9.2.1,9.2.2 Y 25532768 M@1460W@ON
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2,10.2.3, 10.2.4,10.2.5, 10.2.6 Y 6432768 M@1460NW@ONNT
NetBSD 1.1 N 64/16384 M@1460NW@ONNT
NetBSD 1.2,1.2.1 N 64/16384 M@1460NW@ONNT
NetBSD 1.3,1.3.1,1.3.2,1.3.3 N 64116384 M@1460NW@ONNT
NetBSD 1.4,1.4.1,1.4.2,1.4.3 N 64/16384 M@1460NW@ONNT
NetBSD 1.5,1.5.1,1.5.2,15.3 N 64116384 M@1460NW@ONNT
NetBSD 1.6,1.6.1 N 64]16384 M@1460NW@ONNT@0
Netware 4.11, 4.11 sp9 N 12832768 M@1460
Netware 5, 5 sp6a Y 12832768 M@1460
Netware 5.1, 5.1 sp6 Y 12832768 M@1460
Netware 6, 6 sp3 Y 1286144 M@1460W@0NSNN
OpenBSD 2.0,2.1,2.2,2.3,24,25,2.6 N 64/16384 M@1460NW@ONNT
OpenBSD 2.7, 2.8 N 64/16384 M@1460NNSNW@ONNT
OpenBSD 2.9 Y 64/16384 M@1460NNSNW@ONNT
OpenBSD 3.0, 3.1, 3.2,3.3 Y 64/16384 M@1460NNSNW@ONNT
QNX RTP 4 N 64,8192 M@1460
QNX RTP 6.0 N 64,8192 M@1459
QNXRTP 6.1, 6.2, 6.2.1 N 64/16384 M@1460NW@ONNT
SunOS 5.5,5.5.1,5.6, 5.7 Y 255/6(MSS) M@1460
SunOS 5.8 Y 64]17(MSS) NNSM@1460
SunOS 5.9 Y 64/34(MSS) M@1460NNS
SunOS (Intel) 5.8 Y 64/32850 NW@1NNTNNSM@1460
\Windows 95 Y 328192 M@1460
\Windows NT 3.51 standard Y 32/8192 M@1460
\Windows 98, 98 SE Y 1288192 M@1460NNS
\Windows NT 4 standard, sp3, sp4, sp6 Y 1288192 M@1460
\Windows Millennium standard Y 12816384 M@1460NNS
\Windows 2000 standard, sp2, sp3, sp4 Y 12816384 M@1460NNS
\Windows XP Home, Professional Y 12816384 M@1460NNS
\Windows Net standard Y 12816384 M@1460NNS
\Windows 2003 Server standard Y 128]16384 M@1460NNS

Table 13. PassiveTest_ ARPRequest

PassiveTest_ ARPRequest

oS TargetHardwareAddress
BEOS 5 000000000000
FreeBSD 2.0.5,2.1.0,2.15,2.1.6,2.1.7.1,2.2.0,2.2.1,2.2.2,225,2.2.6,2.2.7,2.2.8 000000000000
FreeBSD 3.0, 3.1, 3.2, 3.3,3.4,35.1 000000000000

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

89

PassiveTest ARPRequest

0S

TargetHardwareAddress

FreeBSD 4.0,4.1,4.1.1,4.2,43,4.4,45

000000000000

FreeBSD 4.6, 4.6.2,4.7, 4.8

Uninitialized field

FreeBSD 5.0 Uninitialized field
FreeBSD 5.1 000000000000
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 000000000000
Linux 2.2.0,2.2.1,2.2.2,223,2.24,225,225-15,2.2.6,2.2.7,2.2.8,2.2.9 000000000000
Linux 2.2.10,2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17,2.2.18,2.2.19 000000000000
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 000000000000
Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.4.4,2.4.4-4GB, 2.4.5,2.4.6, 2.4.7, 2.4.8, 2.4.9 000000000000
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,

2.4.18-3, 2.4.18-4GB,2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk 000000000000
MacOS 7.5.3,7.5.5, 7.6, 7.6.1 FFFFFFFFFFFF
MacOS 8.0, 8.1 FFFFFFFFFFFF
MacOS 9.0, 9.1, 9.2.1, 9.2.2 FFFFFFFFFFFF

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5,

10.2.6 000000000000
NetBSD 1.1 000000000000
NetBSD 1.2,1.2.1 000000000000
NetBSD 1.3,1.3.1,1.3.2,1.3.3 000000000000
NetBSD 1.4,1.4.1,1.4.2,1.4.3 000000000000
NetBSD 1.5,1.5.1,1.5.2,1.5.3 000000000000
NetBSD 1.6, 1.6.1 000000000000
Netware 4.11, 4.11 sp9 000000000000
Netware 5, 5 sp6a 000000000000
Netware 5.1, 5.1 sp6 000000000000
Netware 6, 6 sp3 000000000000

90

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest ARPRequest

oS TargetHardwareAddress
OpenBSD 2.0, 2.1,2.2,2.3,2.4,25,26,2.7,2.8,29 000000000000
OpenBSD 3.0, 3.1, 3.2, 3.3 000000000000
QNX RTP 4 000000000000
QNX RTP 6.0, 6.1, 6.2, 6.2.1 000000000000
SunOS 5.5,5.5.1,5.6,5.7,5.8,5.9 FFFFFFFFFFFF
SunOS (Intel) 5.8 FFFFFFFFFFFF
\Windows 95 000000000000
\Windows NT 3.51 standard 000000000000
\Windows 98, 98 SE 000000000000
\Windows NT 4 standard, sp3, sp4, sp6 000000000000
\Windows Millennium standard 000000000000
\Windows 2000 standard, sp2, sp3, sp4 000000000000
\Windows XP Home, Professional 000000000000
\Windows Net standard 000000000000
\Windows 2003 Server standard 000000000000

Table 14. PassiveTest_TCP_ISN

PassiveTest TCP_ISN ¥

oS class val gcdmin | gcdmax | stdmin stdmax
BEOS 5 RI -1 1] 1] 1000892 2444429
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1 64K -1 -1 -1 -1 -1
FreeBSD 2.2.0 RI -1 1 2 3929 53128
FreeBSD 2.2.1 RI -1 1] 1] 4882 57589
FreeBSD 2.2.2 RI -1 1] 2 3207 52255
FreeBSD 2.2.5 RI -1 1] 3 6346 64159
FreeBSD 2.2.6 RI -1 1] 1 6910 59577
FreeBSD 2.2.7 RI -1 1] 2 6921 63422
FreeBSD 2.2.8 RI -1 1 2 5568 60729
FreeBSD 3.0 RI -1 1 2 6210 59938
FreeBSD 3.1 RI -1 1] 5 5559 62277

% The ranges for the ged and std were estimated based on a limited number of samples

(60 samples of 6 packets)

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

91

PassiveTest TCP_ISN ¥

oS class val gcdmin | gcdmax stdmin stdmax
FreeBSD 3.2 RI -1 1 2 8698 63908
FreeBSD 3.3 RI -1 1] 2 7282, 62903
FreeBSD 3.4 RI -1 1] 2 7262, 67257
FreeBSD 3.5.1 RI -1 1 3 6697, 63850
FreeBSD 4.0 RI -1 1] 2 7260, 62624
FreeBSD 4.1 RI -1] 1] 2 5679 61199
FreeBSD 4.1.1 RI -1] 1] 2 6355 61643
FreeBSD 4.2 RI -1] 1] 3 10688 154539
FreeBSD 4.3,4.4,4.5,4.6,4.6.2,4.7,4.8,5.0,5.1 TR -1 -1 -1 -1 -1
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 TR -1 -1 -1 -1 -1
Linux 2.2.0 RI -1 1] 2 635711 6294505
Linux 2.2.1 RI -1 1] 2 844449 6327873
Linux 2.2.2 RI -1 1 2| 442839 5885217
Linux 2.2.3 RI -1 1] 2 303081 5481445
Linux 2.2.4 RI -1 1] 3] 1066440 5214589
Linux 2.2.5 RI -1 1] 2| 1070076 6642435
Linux 2.2.5-15 RI -1 1] 1] 659554 5742076
Linux 2.2.6 RI -1 1] 1] 1187507 5427882
Linux 2.2.7 RI -1 1 3 302863 5946898
Linux 2.2.8 RI -1 1] 1] 1036204 5794169
Linux 2.2.9 RI -1 1] 2 535482 6612445
Linux 2.2.10 RI -1 1] 2 935261 5573627
Linux 2.2.11 RI -1 1 3 693463 5549501
Linux 2.2.12 RI -1 1] 1] 636419 6208814
Linux 2.2.12-20 RI -1 1 9 198530 5763325
Linux 2.2.13 RI -1 1] 3 357923 6146175
Linux 2.2.14 RI -1 1] 2 440362 5341550
Linux 2.2.14-5 RI -1 1] 4 862625 6431236
Linux 2.2.15 RI -1 1 3| 1094033 6688537
Linux 2.2.16 RI -1 1] 3 418447 6335311
Linux 2.2.16-22 RI -1 1] 1] 678021 5844348
Linux 2.2.17 RI -1 1] 2 790658 5953259
Linux 2.2.18 RI -1 1 2 885130 6038753
Linux 2.2.19 RI -1 1 1 648203 6106031
Linux 2.2.20 RI -1 1 3 678499 6384234
Linux 2.2.20-idepci RI -1 1] 2 643181 6516181
Linux 2.2.21 RI -1 1] 2 807928 6511153
Linux 2.2.22 RI -1 1 2| 1365318 5387254
Linux 2.2.23 RI -1 1] 1] 938740 5526417
Linux 2.2.24 RI -1 1] 4 624259 5624091
Linux 2.4.0 RI -1 1] 3 1145706 5697069
Linux 2.4.1 RI -1 1] 2 686064 5177326
Linux 2.4.2 RI -1 1 2 814985 5910699
Linux 2.4.2-2 RI -1 1] 3 662334 6724921
Linux 2.4.3 RI -1 1] 2| 1133825 5588171
Linux 2.4.4 RI -1 1] 2 747922 5608453
Linux 2.4.4-4GB RI -1 1] 3 633121 5372215
Linux 2.4.5 RI -1 1 2 912120 5648993
Linux 2.4.6 RI -1 1] 2 872446 6468744
Linux 2.4.7 RI -1 1 2 885387 5914056

92

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest TCP_ISN ¥

oS class val gcdmin | gcdmax stdmin stdmax

Linux 2.4.8 RI -1 1] 3 889712 6079950
Linux 2.4.9 RI -1 1 2| 761024 5587906
Linux 2.4.10 RI -1 1 2| 1101187] 5697998
Linux 2.4.10-4GB RI -1 1] 3 956986 5914896
Linux 2.4.11 RI -1 1 2| 740901 5793945
Linux 2.4.12 RI -1 1 3 1218711 5928584
Linux 2.4.13 RI -1 1] 2| 1038365 6119539
Linux 2.4.14 RI -1 1 1 1271446 6192395
Linux 2.4.15 RI -1 1 2| 1259864 5706854
Linux 2.4.16 RI -1 1] 2 969006 6284941
Linux 2.4.17 RI -1 1 3] 711902 5892498
Linux 2.4.18 RI -1 1] 5 223250 5586006
Linux 2.4.18-14 RI -1 1] 2 992302 5690466
Linux 2.4.18-3 RI -1 1] 2 899907 5863692
Linux 2.4.18-4GB RI -1 1] 3] 1040789 6233509
Linux 2.4.19 RI -1 1] 3 962273 5899243
Linux 2.4.19-4GB RI -1 1 4] 583168 5255110
Linux 2.4.20 RI -1 1] 2 705151 5996601
Linux 2.4.20-8 RI -1 1] 2 872000 6366992
Linux 2.4.21-0.13mdk RI -1 1] 2| 1018968| 6074813
MacOS 7.6, 7.6.1, 8.0, 8.1 64K -1 -1 -1 -1 -1
MacOS 9.0 RI -1 1 2 6011 79545
MacOS 9.1 RI -1 1 1 47162 81852,
MacOS 9.2.1 RI -1 1 1 4607, 82016
MacOS 9.2.2 RI -1 1 1 2996 76299
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,

10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 TR -1 -1 -1 -1 -1
NetBSD 1.1,1.2.1 64K -1 -1 -1 -1 -1
NetBSD 1.3 RI -1 1 2| 39737, 244693
NetBSD 1.3.1 RI -1 1] 4 23505 308482
NetBSD 1.3.2 RI -1 1 2 30144 243626
NetBSD 1.3.3 RI -1 1 2 36169 244680
NetBSD 1.4 RI -1 1] 1] 3564039 16816537
NetBSD 1.4.1 RI -1 1 2| 2442106] 17759148
NetBSD 1.4.2 RI -1 1 2| 2818277 17142013
NetBSD 1.4.3 RI -1 1 4| 1502736/ 19181040
NetBSD 1.5 RI -1 1] 2 866496| 18067551
NetBSD 1.5.1 RI -1 1] 2| 2396436| 16758667
NetBSD 1.5.2 RI -1 1 2| 1675020, 16614205
NetBSD 1.5.3 RI -1 1 2| 2740961] 18160982
NetBSD 1.6 RI -1 1 2| 3287174 16747707
NetBSD 1.6.1 RI -1 1 1] 3757514 18888043
DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 93

PassiveTest TCP_ISN ¥

oS class val gcdmin | gcdmax stdmin stdmax
Netware 4.11 * TD -1 16 144 0 1
Netware 4.11 sp9 RI -1 1] 2| 1077890 6767846
Netware 5 TD -1 16 160] 0 7|
Netware 5 sp6a RI -1 1] 2 617559 8493698
Netware 5.1 RI -1 1] 2 942034 13029814
Netware 5.1 sp6 TR -1 -1 -1 -1 -1
Netware 6 RI -1 1 2] 1106089 6497481
Netware 6 sp3 TR -1 -1 -1 -1 -1
OpenBSD 2.0 RI -1 1] 2 6109 43773
OpenBSD 2.1 RI -1 1] 2 9275 40209
OpenBSD 2.2 RI -1 1] 4 6646 53004
OpenBSD 2.3 RI -1 1] 2 4214 39610
OpenBSD 2.4 RI -1 1] 2 7882 40040
OpenBSD 2.5 RI -1 1] 2 8002 40864
OpenBSD 2.6 RI -1 1] 2 13909 81834
OpenBSD 2.7 RI -1 1] 2 7323 79816
OpenBSD 2.8 RI -1 1] 2 19145 109835
OpenBSD 2.9, 3.0, 3.1, 3.2,3.3 TR -1 -1 -1 -1 -1
QNX RTP 6.1 RI -1 1] 2 53769 264995
QNX RTP 6.2 RI -1 1] 1] 1581550 15103455
ONX RTP 6.2.1 RI -1 1] 3] 1898378 15101966
SunOS 5.5 RI -1 1] 2 8607 47944
SunOS 5.5.1 RI -1 1] 1] 10580 52878
SunOS 5.6 RI -1 1] 2 11790 51830
SunOS 5.7 RI -1 1] 2 13757 48936
SunOS 5.8 RI -1 1] 2 11240 79035
SunOS 5.9 RI -1 1] 2 15877 86686
SunOS (Intel) 5.8 * RI -1 1 3 9599 1526560
\Windows 95 [TD -1 1] 2 1 31
\Windows 98 TD -1 1 2 0 3
\Windows 98 SE TD -1 1 3 5 141
\Windows NT 3.51 standard TD -1 1 3 0 306
\Windows NT 4 standard TD -1 1] 1 0 39
\Windows NT 4 sp3 TD -1 1 10 0 29
\Windows NT 4 sp4 TD -1 1 2 1] 5
\Windows NT 4 sp6 TD -1 1] 1 2 8
Windows NT 4 sp6 *° RI -1 1 1 51195 51196
\Windows Millennium standard RI -1 1] 2 3834 78789
¥ Service packs of Novell systems appear to influence the ISN generation. For

Netware versions 4.11 and 5, the 1SN class determined by the prototype went from
Time-Dependent (TD) to Random Incremental (RI) when the service pack was added.
Similarly, the class changed from RI to “true random” (TR) when a service pack was

installed on Netware 5.1 and 6.

¥ |SN produced by Intel based SunOS may have a greater variability than those of
Sparc based SunOS.
056 out of 60 samples produced a Time-Dependent (TD) signature for Windows NT 4
§p6. The Random Incrementa (RI) signature is due to 4 samples, two with a std of

51195 and two with a std of 51196.

94

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest TCP_ISN ¥

oS class val gcdmin | gcdmax stdmin stdmax
\Windows 2000 Server sp2 RI -1 1 2 1253] 16583
\Windows 2000 Server standard RI -1 1] 2 2612 24155
\Windows 2000 sp2 RI -1 1] 2 3233 23679
\Windows 2000 standard RI -1 1] 2 1810 20529
\Windows 2000 sp3 RI -1 1] 1] 3240 26206
\Windows 2000 sp4 RI -1 1 2 1754 16946
\Windows XP Home RI -1 1 1] 3253 17644
\Windows XP Professional RI -1 1 1] 3770 12943
\Windows Net standard TR -1 -1 -1 -1 -1
\Windows 2003 Server standard TR -1 -1 -1 -1 -1
Table 15. PassiveTest_Echo_IP_ID (Subtest of PassiveTest_IP_ID)
PassiveTest_Echo IP_ID (Subtest of PassiveTest IP_ID)

ResultOSKey IPIDEcho Protocol | PacketType |StimulusProtocolStimulusPacketType|
QNX RTP 4 Y 1 0:0 1)8:0
QNX RTP 6.0 Y 0:0 1)8:0

Table 16. PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)
PassiveTest NULL [P _ID (Subtest of PassiveTest_IP_ID)
ResultOSKey NulllPID Protocol | PacketType

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 1 0:0
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 1 0:0
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 1 14:0
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 1 14:0
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 1 3:3
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 1 3:3
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 1 8:0
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 1 8:0
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 17 none|
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 17 none|
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 A
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 AF
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 AP
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 AR
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 6 AR
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 R
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 6 R
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 S
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 6 S
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 SA
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 6 SA
DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 95

PassveTest NULL_IP_ID (Subtest of PassiveTest IP_ID)

ResultOSKey

NulllPID

Protocol

PacketType

Linux 2.2.0,2.2.1,22.2,223,2.24,225,225-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

0:0

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

0:0

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

14:0

Linux 2.2.0,2.2.1,2.2.2,223,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

14:0

Linux 2.2.0,2.2.1,222,223,224,225,225-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

3:3

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

3:3

Linux 2.2.0,2.2.1,2.2.2,223,224,225,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

8:0)

Linux 2.2.0,2.2.1,22.2,223,2.24,225,225-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

8:0

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

17

none|

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

17

none|

Linux 2.2.0,2.2.1,2.2.2,223,224,225,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

AF

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

AFP

Linux 2.2.0,2.2.1,2.2.2,223,224,225,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

AP

Linux 2.2.0,2.2.1,22.2,223,2.24,225,225-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

AR

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

AR

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,225,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24

96 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassveTest NULL_IP_ID (Subtest of PassiveTest IP_ID)

ResultOSKey NulllPID Protocol | PacketType
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.25,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6 R|
Linux 2.2.0,2.2.1,22.2,2.23,2.2.4,2.25,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 S
Linux 2.2.0,2.2.1,22.2,2.2.3,2.2.4,2.25,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6 S
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.25,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11,2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 SA
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.25,2.25-15,2.2.6,2.2.7,2.2.8, 2.2.9, 2.2.10,
2.2.11,2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6 SA
Linux 2.4.0,2.4.1,24.2,24.3 Y 1 0:0
Linux 2.4.0,2.4.1,2.4.2,24.3 Y 1 14:0
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 1 3:3
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 1 8:0
Linux 2.4.0,2.4.1,2.4.2,24.3 N 17 none
Linux 2.4.0,2.4.1,24.2,24.3 Y 17 none
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 6 A
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 6 AF
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 6 AFP|
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 6 AP
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 6 AR|
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 6 R|
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 6 S
Linux 2.4.0,2.4.1,2.4.2,2.4.3 Y 6 SA
Linux 2.4.2-2 Y 1 0:0
Linux 2.4.2-2 Y 1 14:0
Linux 2.4.2-2 N 1 3:3
Linux 2.4.2-2 1 3:3
Linux 2.4.2-2 Y 1 8:0
Linux 2.4.2-2 N 17 none
Linux 2.4.2-2 Y 17 none
Linux 2.4.2-2 N 6 A
Linux 2.4.22" Y 6 A
Linux 2.4.2-2 N 6 AF
Linux 2.4.2-2 N 6 AFP
Linux 2.4.2-2 N 6 AP|

' Linux 2.4.2-2 behaves differently than Linux 2.4.2. Linux 2.4.2-2 has two signatures
for a TCP ACK packet: one with a null IPID and one with a non zero IP ID. This
system sends anon zero IPID ina TCP ACK segment, unlessthis TCP ACK segment is

the response to a FIN/ACK packet.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

97

PassveTest NULL_IP_ID (Subtest of PassiveTest IP_ID)

ResultOSKey NulllPID Protocol | PacketType
Linux 2.4.2-2 Y 6 AR|
Linux 2.4.2-2 Y 6 R|
Linux 2.4.2-2 N 6 S
Linux 2.4.2-2 Y 6 SA
Linux 2.4.4,2.4.4-4GB Y 1 0:0]
Linux 2.4.4,2.4.4-4GB Y 1 140
Linux 2.4.4,2.4.4-4GB N 1 3:3
Linux 2.4.4,2.4.4-4GB * Y 1 3:3
Linux 2.4.4,2.4.4-4GB Y 1 8:0)
Linux 2.4.4,2.4.4-4GB N 17 none|
Linux 2.4.4,2.4.4-4GB Y 17 none|
Linux 2.4.4,2.4.4-4GB N 6 Al
Linux 2.4.4,2.4.4-4GB N 6 AH
Linux 2.4.4,2.4.4-4GB N 6 AFP|
Linux 2.4.4,2.4.4-4GB N 6 AP
Linux 2.4.4,2.4.4-4GB Y 6 AR|
Linux 2.4.4,2.4.4-4GB Y 6 R|
Linux 2.4.4,2.4.4-4GB N 6 S
Linux 2.4.4,2.4.4-4GB Y 6 SA
Linux 2.4.5,2.4.6,2.4.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15,2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 1 0:0
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15,2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 1 14:0
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 1 3:3
Linux 2.4.5,2.4.6,2.4.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 1 8:0
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15,2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 17 none|
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 17 none

“2 First packet after reboot. It appears that the IP ID of these kernelsis incremantal for
ICMP error messages (at least for port unreachable error messages). For these
messages, the IP ID is globally incremented (e.g. 0x0000, 0x0100, 0x0200, etc) no
matter what the destination is. The author has not seen the counter begin at 0 for TCP
or UDP packets on reboot. Kernels 2.4.0-2.4.3 and 2.4.5-2.4.21 have a different
behaviour. Kernels 2.4.0-2.4.3 useanull IPID for al icmp port unreachable messages.
Kerndl 2.4.5-2.4.21 increment by 0x0001 instead of 0x0100 for icmp port unreach and
do not appear to start with a zero value on rebaoot.

98 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassveTest NULL_IP_ID (Subtest of PassiveTest IP_ID)

ResultOSKey NulllPID Protocol | PacketType
Linux 2.4.5,2.4.6,2.4.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 A
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 6 A
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 AF|
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8,2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 AFP|
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 AP
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 6 AR|
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 6 R
Linux 2.4.5,2.4.6,2.4.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 S
Linux 2.4.5,2.4.6,24.7,2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 6 SA
Linux 2.4.19-4GB N 1 0:0
Linux 2.4.19-4GB Y 1 0:0
Linux 2.4.19-4GB N 1 14:0
Linux 2.4.19-4GB Y 1 14:0
Linux 2.4.19-4GB N 1 3:3]
Linux 2.4.19-4GB Y 1 3:3
Linux 2.4.19-4GB N 1 8:0
Linux 2.4.19-4GB Y 1 8:0)
Linux 2.4.19-4GB N 17 none|
Linux 2.4.19-4GB Y 17 none|
Linux 2.4.19-4GB N 6 A
Linux 2.4.19-4GB N 6 AF|
Linux 2.4.19-4GB N 6 AP
Linux 2.4.19-4GB N 6 AR|
Linux 2.4.19-4GB Y 6 AR|
Linux 2.4.19-4GB N 6 R
Linux 2.4.19-4GB Y 6 R
Linux 2.4.19-4GB N 6 S

* These systems sometimes send a null IPID in a TCP ACK packet transmitted in

response to a FIN/ACK packet.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

99

PassiveTest NULL _|IP_ID (Subtest of PassiveTest |IP_ID)

ResultOSKey NulllPID Protocol | PacketType
Linux 2.4.19-4GB Y 6 S
Linux 2.4.19-4GB N SA
Linux 2.4.19-4GB Y 6 SA

Table 17. PassiveTest_IP_ID
PassiveTest_IP_ID
(OFS] IPIDClass Protocol

FreeBSD 2.0.5,2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5,2.2.6, 2.2.7, 2.2.8 I-S|I (or I) -1
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1,2.2.0,2.2.1,2.2.2,2.25,2.2.6,2.2.7, 2.2.8 I-SlI (or 1) 1
FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5,2.2.6, 2.2.7, 2.2.8 I-S|I (or I) 6
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1,2.2.0,2.2.1,2.2.2,2.25,2.2.6,2.2.7, 2.2.8 I-SlI (or 1) 17
FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 35.1 I-Sl (or 1) -1
FreeBSD 3.0, 3.1, 3.2, 3.3,3.4,35.1 I-SI (or 1) 1
FreeBSD 3.0, 3.1, 3.2, 3.3,3.4,35.1 I-SI (or 1) 6
FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 I-Sl (or 1) 17
FreeBSD 4.0,4.1,4.1.1,4.2,4.3,4.4,45,46,46.2,4.7,4.8, 50,5.1 I-SI (or 1) -1
FreeBSD 4.0,4.1,4.1.1,4.2,4.3,44,45,46,4.6.2,4.7,4.8, 5.0,5.1 I-S| (or I) 1
FreeBSD 4.0,4.1,4.1.1,4.2,43,4.4,45,4.6,4.6.2,4.7,4.8, 5.0,5.1 I-SI (or 1) 6
FreeBSD 4.0,4.1,4.1.1,4.2,4.3,44,45,46,4.6.2,4.7,4.8, 5.0,5.1 I-S| (or I) 17
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I-S1 (or 1) -1
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I-SlI (or I) 1
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I-Sl1 (or 1) 6
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I-SlI (or I) 17
Linux 2.2.0,2.2.1,2.2.2,2.2.3, 2.2.4,2.25, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11,
2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19,
2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I-SI (or I) -1
Linux 2.2.0,2.2.1,2.2.2,2.2.3, 2.2.4,2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11,
2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19,
2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I-SI (or I) 1

100 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_IP_ID

(OFS] IPIDClass Protocol
Linux 2.2.0,2.2.1,22.2,223, 2.2.4,2.25,225-15,2.2.6,2.2.7,2.2.8,2.2.9,2.2.10, 2.2.11,
2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19,
2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I-SlI (or 1) 6
Linux 2.2.0,2.2.1,2.2.2,223, 2.2.4,2.25,2.2.5-15,2.2.6,2.2.7,2.2.8,2.2.9,2.2.10, 2.2.11,
2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19,
2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I-Sl (or 1) 17
Linux 2.4.0,2.4.1,2.4.2,2.43% BI-SD (or BI) 17
Linux 2.4.2-2,2.4.4,2.4.4-4GB I-SD (or I) -1
Linux 2.4.2-2,2.4.4,2.4.4-4GB I-SD (or I) 6
Linux 2.4.2-2,2.4.4,2.4.4-4GB I-SD (or I) 17
Linux 2.4.5,2.4.6,2.4.7,2.4.8,2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk |I-SD (or I) -1
Linux 2.4.5,2.4.6,2.4.7,2.4.8,2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk |[I-SD (or I) 1
Linux 2.4.5,2.4.6,24.7,2.4.8,2.4.9,2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk |I-SD (or I) 6
Linux 2.4.5,2.4.6,2.4.7,2.4.8,2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk |I-SD (or I) 17
Linux 2.4.19-4GB * I-SI (or I) -1
Linux 2.4.19-4GB I-SI (or 1) 1
Linux 2.4.19-4GB I-SI (or I) 6
Linux 2.4.19-4GB I-SI (or I) 17
MacOS 7.5.3,7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.2.2 “ I-SD (or I-Sl or 1) -1
MacOS 7.5.3,7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.2.2 I-SD (or I-Sl or I) 1

“ Linux 2.4.0to 2.4.3 have anull IPID otherwise

“ Linux 2.4.19-4GB is the kernel of Su.SE 8.1. It distinguishes itself from other

Linux kernels by incrementing the IP ID regardless of the socket.

% MacOS 7.5.3,7.5.5,7.6,7.6.1, 8.0, 8.1, 9.2.2 get asignature with IPIDClass equa to
“1-SD” if the sample contains communications with different 1P destination addresses,
they get a signature with IPIDClass equal to “I-SI” if the sample contains
communications with the same IP destination address, but involving different sessions
(e.g. atelnet and a ftp session running in paralel); they get a signature with IPIDClass

equal to“I” if the sample contains one session with one end point.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

101

PassiveTest_IP_ID

oS IPIDClass Protocol
MacOS 7.5.3,7.5.5,7.6,7.6.1, 8.0, 8.1,9.2.2 I-SD (or I-Sl or I) 6
MacOS 7.5.3,7.5.5,7.6,7.6.1, 8.0, 8.1,9.2.2 I-SD (or I-Sl or 1) 17
MacOS 10 10.0.0 I-Sl (or 1) -1
MacOS 10 10.0.0 I-SI (or 1) 1
MacOS 10 10.0.0 I-SI (or 1) 6
MacOS 10 10.0.0 I-SI (or 1) 17
NetBSD 1.1,1.2,1.2.1,1.3,1.3.1,1.3.2,1.3.3,14,14.1,14.2,1.43,15,15.1,1.5.2,1.5.3, 1.6,
1.6.1 I-SI (or 1) -1
NetBSD 1.1,1.2,1.2.1,1.3,1.3.1,1.3.2,1.3.3,1.4,14.1,1.42,143,15,15.1,1.5.2,1.5.3, 1.6,
1.6.1 I-Sl (or 1) 1
NetBSD 1.1,1.2,1.2.1,1.3,1.3.1,1.3.2,1.3.3,1.4,1.4.1,1.42,1.43,15,15.1,1.5.2,1.5.3, 1.6,
1.6.1 I-SI (or 1) 6
NetBSD 1.1,1.2,1.2.1,1.3,1.3.1,1.3.2,1.3.3,14,14.1,14.2,1.43,15,15.1,1.5.2,1.5.3, 1.6,
1.6.1 I-SI (or 1) 17
Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 I-SI (or 1) -1
Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 I-Sl (or 1) 1
Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 I-Sl (or 1)
Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 I-Sl (or 1) 17
Netware 5.1 sp6, 6, 6 sp3 BI-SI (or Bl) -1
Netware 5.1 sp6, 6, 6 sp3 BI-SI (or Bl) 1
Netware 5.1 sp6, 6, 6 sp3 BI-SI (or BI) 6
Netware 5.1 sp6, 6, 6 sp3 BI-SI (or Bl) 17
OpenBSD 2.0,2.1,2.2,23,24 I-SI (or 1) -1
OpenBSD 2.0,2.1,2.2,2.3,2.4 I-SI (or) 1
OpenBSD 2.0,2.1,2.2,23,24 I-S1 (or I) 6
OpenBSD 2.0,2.1,2.2,23,24 I-S1 (or I) 17
OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1,3.2,3.3 RD -1
OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2,3.3 RD 1
OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2,3.3 RD 6
OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2,3.3 RD 17
QNX RTP 4, 6.0, 6.1, 6.2,6.2.1 I-S1 (or I) -1
QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 I-SI (or) 1

102 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_IP_ID

(OFS] IPIDClass Protocol

QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 I-SI (or 1) 6
QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 I-SI (or 1) 17
SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.8(Intel), 5.9 I-SD (or I-Sl or 1) -1
SunOS 5.5,5.5.1, 5.6, 5.7, 5.8, 5.8(Intel), 5.9 I-SD (or I-Sl or I) 1
SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.8(Intel), 5.9 I-SD (or I-Sl or 1) 6
SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.8(Intel), 5.9 I-SD (or 1) 17
\Windows 95, NT 3.51 standard, 98, 98 SE BI-SI (or Bl) -1
\Windows 95, NT 3.51 standard, 98, 98 SE BI-SI (or Bl) 1
\Windows 95, NT 3.51 standard, 98, 98 SE BI-SI (or BI) 6
\Windows 95, NT 3.51 standard, 98, 98 SE BI-SI (or Bl) 17
\Windows NT 4 standard, sp3, sp4, sp6 BI-SI (or Bl) -1
\Windows NT 4 standard, sp3, sp4, sp6 BI-SI (or Bl) 1
\Windows NT 4 standard, sp3, sp4, sp6 BI-SI (or Bl) 6
\Windows NT 4 standard, sp3, sp4, sp6 BI-SI (or Bl) 17
\Windows Millennium standard I-S1 (or I) -1
\Windows Millennium standard I-Sl (or I) 1
\Windows Millennium standard I-SI (or 1) 6
\Windows Millennium standard I-Sl (or I) 17
\Windows 2000 standard, sp2, sp3, sp4 I-SI (or 1) -1
\Windows 2000 standard, sp2, sp3, sp4 I-SI (or I) 1
\Windows 2000 standard, sp2, sp3, sp4 I-Sl (or 1) 6
\Windows 2000 standard, sp2, sp3, sp4 I-SI (or I) 17
\Windows XP Home, Professional I-SI (or 1) -1
\Windows XP Home, Professional I-SI (or I) 1
\Windows XP Home, Professional I-SI (or I) 6
\Windows XP Home, Professional I-S1 (or I) 17
DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 103

PassiveTest_IP_ID

(OFS] IPIDClass Protocol
\Windows Net standard I-SI (or 1) -1
\Windows Net standard I-SI (or 1) 1
\Windows Net standard I-Sl1 (or 1) 6
\Windows Net standard I-SI (or 1) 17
\Windows 2003 Server standard I-Sl1 (or 1) -1
\Windows 2003 Server standard I-SI (or 1) 1
\Windows 2003 Server standard I-SI (or I) 6
\Windows 2003 Server standard I-S1 (or 1) 17
Table 18. PassiveTest TCP_TS
PassiveTest TCP_TS
(OF] TSClass
FreeBSD 2.0.5,2.1.0, 2.1.5,2.1.6,2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,2.2.6, 2.2.7, 2.2.8 2HZ
FreeBSD 4.4,4.5,4.6,4.6.2,4.7,4.8,5.0,5.1 100HZ
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5,2.2.5-15,2.2.6,2.2.7,2.2.8, 2.2.9 100HZ

Linux 2.2.10,2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,

2.2.19 100HZ
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 100HZ
Linux 2.4.0,2.4.1,24.2,24.2-2,24.3,2.4.4,2.4.4-4GB, 2.4.5,2.46,2.4.7,2.4.8,2.4.9 100HZ
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB |L00HZ
Linux 2.4.18-14 500HZ
Linux 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk 100HZ
MacOS 9.0, 9.1, 9.2.1, 9.2.2 1000HZ
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 2HZ
NetBSD 1.1 2HZ

104

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest TCP_TS

oS TSClass
NetBSD 1.2,1.2.1 2HZ
NetBSD 1.3,1.3.1,1.3.2,1.3.3 2HZ
NetBSD 1.4,1.4.1,1.4.2,1.4.3 2HZ
NetBSD 1.5,1.5.1,1.5.2,1.5.3 2HZ
NetBSD 1.6, 1.6.1 Z
OpenBSD 2.0, 2.1,2.2,2.3,2.4,25,26,2.7,2.8, 2.9 2HZ
OpenBSD 3.0, 3.1, 3.2, 3.3 2HZ
QONX RTP 6.2, 6.2.1 2HZ
SunOS 5.6,5.7,5.8,5.9 100HZ
SunOS (Intel) 5.8 100HZ
\Windows 2000 standard, sp2, sp3, sp4 z
\Windows Millennium standard z
\Windows XP Home, Professional va
\Windows Net standard va
\Windows 2003 Server standard z

Table 19. PassiveTest_ARPRetransmit
PassiveTest ARPRetransmit
oS NbOfPackets DelayMin DelayMax ARPClass

BEOS 5 1] SP
FreeBSD 2.0.5,2.1.0,2.15,2.1.6,2.1.7.1,2.2.0, 2.2.1,
2.2.2,2.2.5,2.2.6,2.2.7,2.2.8 1] SP
FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 1] SP
FreeBSD 4.0, 4.1,4.1.1,4.2,4.3,4.4,4.5, 4.6,4.6.2, 4.7,
4.8,5.0,5.1 1] SP
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 infinit */ 5000000 60000000UNKNOWN
Linux 2.2.0,2.2.1,2.2.2,2.2.3 4 1000000 1000000/C
Linux 2.2.4,2.25,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9 3 1000000 1000000/C

4" Linux 2.0.29 to 2.0.36 keep retransmitting unaswered ARP requests. The first 4
packets are separated by 5 seconds, then all remaining packets are separated by 60

seconds.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

105

PassiveTest ARPRetransmit

oS NbOfPackets DelayMin DelayMax ARPClass
Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14,
2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 3 1000000 1000000C
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22,2.2.23, 2.2.24 3 1000000 1000000/C
Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.4.4, 2.4.4-4GB,
2.4.5,2.4.6,24.7,24.8,2.4.9 3 1000000 1000000/C
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14,
2.4.15,2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB,2.4.18-
14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk 3 1000000 1000000/C
MacOS 7.5.3,7.5.5,7.6,7.6.1 6) 1000000 1000000/C
MacOS 8.0, 8.1 6) 1000000 1000000/C
MacOS 9.0, 9.1,9.2.1,9.2.2 6) 1000000 1000000/C
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,
10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 1] SP
NetBSD 1.1 1] SP
NetBSD 1.2,1.2.1 1] SP
NetBSD 1.3,1.3.1,1.3.2,1.3.3 1] SP
NetBSD 1.4,14.1,14.2,1.43 1] SP
NetBSD 1.5,1.5.1,1.5.2,1.5.3 1] SP
NetBSD 1.6, 1.6.1 1] SP
Netware 4.11, 4.11 sp9, 1] SP
Netware 5, 5 sp6a 1] SP
Netware 5.1, 5.1 sp6 1 SP
Netware 6, 6 sp3 1] SP
OpenBSD 2.0,2.1,2.2,2.3,2.4,25,26,2.7,2.8,2.9 1] SP
OpenBSD 3.0,3.1,3.2,3.3 1 SP
QNX RTP 4 1] SP
QONXRTP 6.0, 6.1, 6.2, 6.2.1 1] SP
SunOS 5.5,5.5.1 6| 900000 900000/C
SunOS 5.6, 5.7, 5.8, 5.9, (Intel) 5.8 6) 1000000 1000000C
\Windows 95 1 SP
\Windows NT 3.51 standard 1 SP
\Windows 98, 98 SE 1 SP
\Windows NT 4 standard, sp3, sp4, sp6 1 SP
\Windows Millennium standard 1 SP
\Windows 2000 standard, sp2, sp3, sp4 1 SP
\Windows XP Home, Professional 1 SP
\Windows Net standard 1 SP
\Windows 2003 Server standard 1 SP

106 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Table 20. PassiveTest_TCP_SYNACK

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
BEOS 5 N 25512288 S++ M@1460 {C.NewM@1460TW}
BEOS 5 N 25512288 S++ M@1460 {(M@1459}
BEOS 5 N 25512288 S++ M@1460 {M@1460}
BEOS 5 N 25512288 S++ M@1460 {M@1460S}
BEOS 5 N 25512288 S++ M@1460 {M@1460STW}
BEOS 5 N 255/12288 S++ M@1460 {(M@1460T@0W}
BEOS 5 N 25512288 S++ M@1460 {M@1460TW}

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,

2.2.6,2.2.7,2.2.8 N 64117280 S++ M@1460NW@ONNTNNCNNC.Echo {C.NewM@1460TW}
FreeBSD 2.1.5,2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5, 12(MSSReq)

2.2.6,2.2.7,2.2.8 N 64® S++ M@1460 (M@1459}
FreeBSD 2.1.5,2.1.6,2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,

2.2.6,2.2.7,2.2.8 N 6412(MSS) S++ M@1460 (M@1460}
FreeBSD 2.1.5,2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,

2.2.6,2.2.7,2.2.8 N 6412(MSS) S++ M@1460 (M@1460S}
FreeBSD 2.1.5,2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,

2.2.6,2.2.7,2.2.8 N 6417376 S++ M@1460NW@ONNT (M@1460STW}
FreeBSD 2.1.5,2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,

2.2.6,2.2.7,2.2.8 N 6417376 S++ M@1460NW@ONNT (M@1460T@0W}
FreeBSD 2.1.5,2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,

2.2.6,2.2.7,2.2.8 N 64117376 S++ M@1460NW@ONNT (M@1460TW}

10T

*® 12(MSSReq) means that the TCP Window Size (WIN) in the response is equal to twelve times the TCP Maximum Segment Size (MSS)
advertized in the request (i.e. the SYN packet). In this particular signature 12(M SSReq) means that the WIN was equal to 12x1459=17508. It can
be infer from this signature that when the WIN value in FreeBSD SYN/ACK is related to a MSS value, the influence comes from the MSS
advertized in the SYN rather than from the MSS value advertized in the SYN/ACK response. This observation holds for Mac OS X, OpenBSD,
Windows, SunOS 5.8 and 5.9, and NetBSD prior to 1.3.

80T

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
FreeBSD 3.0, 3.1, 3.2, 3.3,3.4,35.1, 4.0,4.1,
4.1.1,4.2,4.3 Y 64{12(MSS) S++ M@1460 {C.NewM@1460TW}
FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4,35.1, 4.0,4.1,
4.1.1,4.2,4.3 Y 64/12(MSSReq) [S++ M@1460 {(M@1459}
FreeBSD 3.0, 3.1, 3.2,3.3,3.4,35.1, 4.0,4.1,
4.1.1,4.2,4.3 \ 64{12(MSS) S++ M@1460 {(M@1460}
FreeBSD 3.0, 3.1, 3.2,3.3,3.4,35.1, 4.0,4.1,
4.1.1,4.2,4.3 \ 64{12(MSS) S++ M@1460 {(M@1460S}
FreeBSD 3.0, 3.1, 3.2,3.3,3.4,35.1, 4.0,4.1,
4.1.1,4.2,4.3 \ 64{12(MSS) S++ M@1460 {(M@1460STW}
FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4,35.1, 4.0, 4.1,
4.1.1,4.2,4.3 Y 64{12(MSS) S++ M@1460 {(M@1460T@0W}
FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4,35.1, 4.0,4.1,
4.1.1,4.2,4.3 Y 64{12(MSS) S++ M@1460 {(M@1460TW}
FreeBSD 4.4 Y 6417376 S++ M@1460NW@ONNT {C.NewM@1460TW}
FreeBSD 4.4 Y 6412(MSSReq) [S++ M@1460 {(M@1459}
FreeBSD 4.4 \ 64{12(MSS) S++ M@1460 {(M@1460}
FreeBSD 4.4 \ 64{12(MSS) S++ M@1460 {(M@1460S}
FreeBSD 4.4 Y 64{17376 S++ M@1460NW@ONNT {(M@1460STW}
FreeBSD 4.4 Y 64{17376 S++ M@1460NW@ONNT {M@1460T @0W}
FreeBSD 4.4 Y 64{17376 S++ M@1460NW@ONNT {(M@1460TW}
FreeBSD 4.5 N 6465535 S++ M@1460NW@INNT {C.NewM@1460TW}
FreeBSD 4.5 N 6465535 S++ M@1460 (M@1459}
FreeBSD 4.5 N 6465535 S++ M@1460 {(M@1460}
FreeBSD 4.5 N 64|65535 S++ M@1460 {(M@1460S}
FreeBSD 4.5 N 64|65535 S++ M@1460NW@INNT {(M@1460STW}
FreeBSD 4.5 N 64|65535 S++ M@1460NW@INNT {(M@1460T @0W}
FreeBSD 4.5 N 64|65535 S++ M@1460NW@INNT {(M@1460TW}
FreeBSD 4.6, 4.6.2,4.7, 4.8 N 64|57344 S++ M@1460NW@ONNT {C.NewM@1460TW}

60T

PassiveTest TCP_SYNACK

ResultOSKey DF | TTL WIN AckNb | TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts
FreeBSD 4.6, 4.6.2,4.7, 4.8 N 6457344 S++ M@1460 {M@1459}
FreeBSD 4.6, 4.6.2,4.7, 4.8 N 6457344 S++ M@1460 {M@1460}
FreeBSD 4.6, 4.6.2,4.7, 4.8 N 6457344 S++ M@1460 {(M@1460S}
FreeBSD 4.6, 4.6.2,4.7, 4.8 N 6457344 S++ M@1460NW@ONNT {(M@1460STW}
FreeBSD 4.6, 4.6.2,4.7, 4.8 N 6457344 S++ M@1460NW@ONNT {(M@1460T @0W}
FreeBSD 4.6, 4.6.2,4.7, 4.8 N 6457344 S++ M@1460NW@ONNT {(M@1460TW}
FreeBSD 5.0, 5.1 Y 64165535 S++ M@1460NW@INNT {C.NewM@1460TW}
FreeBSD 5.0, 5.1 Y 64165535 S++ M@1460 {M@1459}
FreeBSD 5.0, 5.1 Y 64165535 S++ M@1460 {M@1460}
FreeBSD 5.0, 5.1 Y 64165535 S++ M@1460 {M@1460S}
FreeBSD 5.0, 5.1 Y 64165535 S++ M@1460NW@1INNT {M@1460STW}
FreeBSD 5.0, 5.1 Y 64165535 S++ M@1460NW@1INNT {(M@1460T@0W}
FreeBSD 5.0, 5.1 Y 64165535 S++ M@1460NW@INNT {M@1460TW}
Linux 2.0.29 (Debian) N 64]15360 S++ M@1460 {C.NewM@1460TW}
Linux 2.0.29 (Debian) N 64]15360 S++ M@1459 {(M@1459}
Linux 2.0.29 (Debian) N 64]15360 S++ M@1460 {(M@1460}
Linux 2.0.29 (Debian) N 64]15360 S++ M@1460 {M@1460S}
Linux 2.0.29 (Debian) N 64]15360 S++ M@1460 {M@1460STW}
Linux 2.0.29 (Debian) N 64]15360 S++ M@1460 {(M@1460T@0W}
Linux 2.0.29 (Debian) N 64]15360 S++ M@1460 {M@1460TW}
Linux 2.0.30 (RedHat) N 6431744 S++ M@1460 {C.NewM@1460TW}
Linux 2.0.30 (RedHat) N 6431744 S++ M@1459 {(M@1459}
Linux 2.0.30 (RedHat) N 64i31744 S++ M@1460 {M@1460}
Linux 2.0.30 (RedHat) N 64i31744 S++ M@1460 {(M@1460S}
Linux 2.0.30 (RedHat) N 64i31744 S++ M@1460 {(M@1460STW}
Linux 2.0.30 (RedHat) N 64i31744 S++ M@1460 {(M@1460T @0W}
Linux 2.0.30 (RedHat) N 64i31744 S++ M@1460 {(M@1460TW}
Linux 2.0.32, 2.0.36 (RedHat) N 64{32736 S++ M@1460 {C.NewM@1460TW}
Linux 2.0.32, 2.0.36 (RedHat) N 64{32736 S++ M@1459 {(M@1459}
Linux 2.0.32, 2.0.36 (RedHat) N 64{32736 S++ M@1460 {M@1460}
Linux 2.0.32, 2.0.36 (RedHat) N 64{32736 S++ M@1460 {(M@1460S}
Linux 2.0.32, 2.0.36 (RedHat) N 64{32736 S++ M@1460 {(M@1460STW}

0Tt

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
Linux 2.0.32, 2.0.36 (RedHat) N 6432736 S++ M@1460 {(M@1460T@0W}
Linux 2.0.32, 2.0.36 (RedHat) N 6432736 S++ M@1460 {M@1460TW}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {C.NewM@1460TW}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {C.NewM@1460TW}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1459 {(M@1459}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1459 {(M@1459}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460S}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460S}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460STW}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460STW}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460T@0W}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460T@0W}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460TW}
Linux 2.0.34, 2.0.36 (Debian) N 6416352 S++ M@1460 {(M@1460TW}
Linux 2.2.0,2.2.1,2.2.2,223,2.24,22.5,2.25-15,
2.2.6,2.2.7,2.28,2.2.9,2210,22.11,2.2.12,2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17,2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6422(MSS) S++ M@1460NNTNW@0 {C.NewM@1460TW}
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5, 2.2.5-15,
2.2.6,2.2.7,2.2.8,2.2.9,2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17,2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6422(MSS) S++ M@1459 {M@1459}
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5, 2.2.5-15,
2.2.6,2.2.7,2.28,2.2.9,2210,2.2.11,2.2.12,2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17,2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6422(MSS) S++ M@1460 {M@1460}

TTT

PassiveTest TCP_SYNACK

ResultOSKey

DF

TTL

WIN

AckNb

TCPecn

TCPopts

SYN_TCPecn

SYN_SetOfTCPopts

Linux 2.2.0,2.2.1,2.22,223,2.24,22.5,2.25-15,

2.2.6,2.2.7,2.2.8,2.2.9,2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,

2.2.17,2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24

64

22(MSS)

S++

M@1460NNS

(M@1460S}

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,22.5, 2.2.5-15,

2.2.6,2.2.7,2.2.8,2.2.9,2.210, 2211, 2.2.12,2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,

2.2.17,2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24

64

22(MSS)

S++

M@1460STNW@0

(M@1460STW}

Linux 2.2.0,2.2.1,2.2.2,2.23,224,225,2.25-15,

2.2.6,2.2.7,2.2.8,2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,

2.2.17,2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24

64

22(MSS)

S++

M@1460NNTNW@0

(M@1460T@O0W}

Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5, 2.2.5-15,

2.2.6,2.2.7,2.2.8,2.2.9,2.210, 2211, 2.2.12,2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,

2.2.17,2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24

64

22(MSS)

S++

M@1460NNTNW@0

(M@1460TW}

Linux 2.2.19, 2.2.20-idepci (Debian)

64

11(MSS)

S++

M@1460NNTNW@0

{C.NewM@1460TW}

Linux 2.2.19, 2.2.20-idepci (Debian)

64

11(MSS)

S++

M@1459

(M@1459}

Linux 2.2.19, 2.2.20-idepci (Debian)

64

11(MSS)

S++

M@1460

(M@1460}

Linux 2.2.19, 2.2.20-idepci (Debian)

64

11(MSS)

S++

M@1460NNS

(M@1460S}

Linux 2.2.19, 2.2.20-idepci (Debian)

64

11(MSS)

S++

M@1460STNW@0

(M@1460STW}

Linux 2.2.19, 2.2.20-idepci (Debian)

64

11(MSS)

S++

M@1460NNTNW@0

(M@1460T@0W}

Linux 2.2.19, 2.2.20-idepci (Debian)

<RRIRIRRI<=

64

11(MSS)

S++

M@1460NNTNW@0

(M@1460TW}

Linux 2.4.0,2.4.1,24.2,2.4.2-2,2.4.3,2.4.4,2.4.4-
4GB, 2.4.5,2.4.6,2.4.7,2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12,2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk

64

5792

S++

M@1460NNTNW@0

{C.NewM@1460TW}

Linux 2.4.0,2.4.1,2.4.2,24.2-2,2.4.3,2.4.4,2.4.4-
4GB, 2.4.5,2.4.6,2.4.7,2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12,2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk

64

4(MSS)

S++

M@1460

(M@1459}

[AN)

PassiveTest TCP_SYNACK

ResultOSKey

DF

TTL

WIN

AckNb

TCPecn

TCPopts

SYN_TCPecn

SYN_SetOfTCPopts

Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.4.4, 24.4-
4GB, 2.4.5,2.4.6,2.4.7,2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12,2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk

64

4(MSS)

S++

M@1460

(M@1460}

Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.44,2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12,2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk

64

4(MSS)

S++

M@1460NNS

(M@1460S}

Linux 2.4.0,2.4.1,24.2,2.4.2-2,2.4.3,2.4.4,2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12,2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk

64

5792

S++

M@1460STNW@0

(M@1460STW}

Linux 2.4.0,2.4.1,2.4.2,24.2-2,2.4.3,2.4.4,2.4.4-
4GB, 2.4.5,2.4.6,2.4.7,2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12,2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk

64

4(MSS)

S++

M@1460NW@0 *°

(M@1460T@O0W}

Linux 2.4.0,2.4.1,24.2,2.4.2-2,2.43,2.4.4,2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12,2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk

64

5792

S++

M@1460NNTNW@0

{M@1460TW}

MacOS 7.5.3,7.5.5

=<

255

12(MSS)

S++

M@1460W@0L

{C.NewM@1460TW}

MacOS 7.5.3,7.5.5

255

13(MSS)

S++

M@1459

(M@1459}

* Linux 2.4.0 and above stop supporting the TCP Timestamp option if TSval is set to zero (T@O0) in the TCP timestamp option of the SYN

request.

PassiveTest TCP_SYNACK

ResultOSKey DF | TTL WIN AckNb | TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts
MacOS 7.5.3,7.5.5 Y 25512(MSS) S++ M@1460 {M@1460}
MacOS 7.5.3,7.5.5 Y 25512(MSS) S++ M@1460 {(M@1460S}
MacOS 7.5.3,7.5.5 Y 25512(MSS) S++ M@1460 *° {(M@1460STW}
MacOS 7.5.3, 7.5.5 Y 25512(MSS) S++ M@1460W@0L {(M@1460STW}
MacOS 7.5.3,7.5.5 Y 25512(MSS) S++ M@1460W@0L {(M@1460T @0W}
MacOS 7.5.3,7.5.5 Y 25512(MSS) S++ M@1460W@0L {(M@1460TW}
MacOS 7.6, 7.6.1, 8.0, 8.1 " Y 25512(MSS) S++ M@1460W@0L {C.NewM@1460TW}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25565535 S++ M@1460W@2L {C.NewM@1460TW}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25513(MSS) S++ M@1459 {M@1459}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25544(MSS) S++ M@1459 {(M@1459}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25512(MSS) S++ M@1460 {(M@1460}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25544(MSS) S++ M@1460 {(M@1460}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25512(MSS) S++ M@1460 {M@1460S}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25544(MSS) S++ M@1460 {M@1460S}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25512(MSS) S++ M@1460 {M@1460STW}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25512(MSS) S++ M@1460W@0L {M@1460STW}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25544(MSS) S++ M@1460 {M@1460STW}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25565535 S++ M@1460W@2L {M@1460STW}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25512(MSS) S++ M@1460W@0L {M@1460T@0W}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25565535 S++ M@1460W@2L {(M@1460T@0W}

€Tt

% MacOS 7 to 8 have two signatures for the SYN stimulus with SYN_SetOf TCPopts={ M@1460STW@0}. Recall that the TCP options in
SYN_SatOfTCPopts are listed in alphabetic order while the TCP options in TCPops are listed in the order they appear. MacOS 7 to 8 are the only
systems we have seen for which the order in which the TCP options appear in the SY N influence the options advertised in response. Experiments
conducted on the testbed lead us to believe that these systems do not process the last TCP option appearing in the SYN packet. Aside from the
NOP and the EOL options, these machines only support the MSS and Window scale option. They show support for both options when stimulated
by OpenBSD 2.9 (SYN_SetOf TCPopts={ M @1460STW@0}) for which the options appear in the following order M@1460NNSNW@ONNT.
The Window Scale option is missing from their response to Linux 2.4.7 (SYN_SetOf TCPopts={ M @1460STW @0}) for which the options appear
in the following order M @1460STNW@0.

> The Window size (WIN) valuein SYN/ACK of MacOS 7.6 to 8.1 could be influence by the service running and the WIN value advertized in the
stimulus (omitted from the signature).

71l

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25512(MSS) S++ M@1460W@0L {(M@1460TW}
MacOS 7.6, 7.6.1, 8.0, 8.1 Y 25565535 S++ M@1460W@2L {M@1460TW}
MacOS 9.0, 9.1, 9.2.1, 9.2.2 ** N 25532768 S++ M@1460W@ONNNT {C.NewM@1460TW}
MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 25565535 S++ M@1460W@2NNNT {C.NewM@1460TW}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 25532768 S++ M@1459 {(M@1459}
MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255/65535 S++ M@1459 {(M@1459}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 255[32768 S++ M@1460 {M@1460}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 25565535 S++ M@1460 {M@1460}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 255[32768 S++ M@1460 {(M@1460S}
MacOS 9.0, 9.1,9.2.1,9.2.2 N 25565535 S++ M@1460 {(M@1460S}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 255[32768 S++ M@1460W@ONNNT {(M@1460STW}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 25565535 S++ M@1460W@2NNNT {(M@1460STW}
MacOS 9.0, 9.1,9.2.1,9.2.2 N 255[32768 S++ M@1460W@ONNNT {(M@1460T @0W}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 25565535 S++ M@1460W@2NNNT {M@1460T @0W}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 255[32768 S++ M@1460W@ONNNT {(M@1460TW}
MacOS 9.0, 9.1, 9.2.1,9.2.2 N 25565535 S++ M@1460W@2NNNT {(M@1460TW}
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2,10.2.3,10.2.4, 10.2.5, 10.2.6 ** Y 6433304 S++ M@1460NW@ONNT {C.NewM@1460TW}
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 6423(MSSReq)*{S++ M@1460 {(M@1459}

*2 The Window size (WIN) value in SYN/ACK of MacOS 9 could be influence by the service running and the WIN value advertized in the

stimulus (omitted from the signature).

* The Window size (WIN) value in SYN/ACK of MacOS X appears to be independent of service running, but to depend on the presence of

Window Scale option in the stimulus.

** “MSSReq” means that the TCP Window Size (WIN) in the response is related to TCP Maximum Segment Size (MSS) advertized in the request
(i.e. M@1459 of the SYN packet). It can be infer from this signature that when the WIN value in MacOS X's SYN/ACK is related to a MSS

value, the influence comes from the M SS advertized in the SY N rather than from the M SS value advertized in the SYN/ACK response.

PassiveTest TCP_SYNACK

ResultOSKey DF | TTL WIN AckNb | TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2,10.2.3, 10.2.4,10.2.5, 10.2.6 Y 6423(MSS) S++ M@1460 {M@1460}
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2,10.2.3, 10.2.4,10.2.5, 10.2.6 Y 6423(MSS) S++ M@1460 {(M@1460S}
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64{33304 S++ M@1460NW@ONNT {(M@1460STW}
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64i33304 S++ M@1460NW@ONNT {(M@1460T@0W}
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64i33304 S++ M@1460NW@ONNT {M@1460TW}
NetBSD 1.1,1.2,1.2.1 N 64/12(MSS) S++ M@1460NW@ONNT {C.NewM@1460TW}

12(MSSReq)

NetBSD 1.1,1.2,1.2.1 N 647° S++ M@1460 {M@1459}
NetBSD 1.1,1.2,1.2.1 N 64/12(MSS) S++ M@1460 {M@1460}
NetBSD 1.1,1.2,1.2.1 N 64/12(MSS) S++ M@1460 {(M@1460S}
NetBSD 1.1,1.2,1.2.1 N 64/12(MSS) S++ M@1460NW@ONNT {(M@1460STW}
NetBSD 1.1,1.2,1.2.1 N 64/12(MSS) S++ M@1460NW@ONNT {(M@1460T @0W}
NetBSD 1.1,1.2,1.2.1 N 64/12(MSS) S++ M@1460NW@ONNT {(M@1460TW}
NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4,1.4.1,1.4.2,
143, 1.5,15.1,15.2, 153 N 64|116384 S++ M@1460NW@ONNT {C.NewM@1460TW}
NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4,1.4.1,1.4.2,
143, 1.5,15.1,15.2, 153 N 64]116384 S++ M@1460 {(M@1459}
NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4,1.4.1,1.4.2,
143, 15,15.1,15.2, 153 N 64]116384 S++ M@1460 {(M@1460}
NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4,1.4.1,1.4.2,
1.4.3, 15,151, 152,153 N 64]116384 S++ M@1460 {M@1460S}

STT

> “MSSReq” means that the TCP Window Size (WIN) in the response is related to TCP Maximum Segment Size (MSS) advertized in the request
(i.e. M@1459 of the SYN packet). It can beinfer from this signature that when the WIN value in a SYN/ACK transmitted by NetBSD 1.1 and 1.2
is related to a M SS value, the influence comes from the MSS advertized in the SY N rather than from the M SS value advertized in the SYN/ACK
response.

9TT

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4,1.4.1,1.4.2,
1.4.3, 1.5,1.5.1,15.2,1.5.3 N 6416384 S++ M@1460NW@ONNT {M@1460STW}
NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4,1.4.1,1.4.2,
1.4.3, 1.5,1.5.1,1.5.2,1.5.3 N 6416384 S++ M@1460NW@ONNT {(M@1460T@0W}
NetBSD 1.3,1.3.1,1.3.2,1.3.3, 1.4,1.4.1,1.4.2,
1.4.3, 1.5,1.5.1,1.5.2,1.5.3 N 6416384 S++ M@1460NW@ONNT {(M@1460TW}
NetBSD 1.6, 1.6.1 N 6416384 S++ M@1460NW@ONNT@0 {C.NewM@1460TW}
NetBSD 1.6, 1.6.1 N 6416384 S++ M@1460 {(M@1459}
NetBSD 1.6, 1.6.1 N 6416384 S++ M@1460 {(M@1460}
NetBSD 1.6, 1.6.1 N 6416384 S++ M@1460 {(M@1460S}
NetBSD 1.6, 1.6.1 N 6416384 S++ M@1460NW@ONNT@0 {(M@1460STW}
NetBSD 1.6, 1.6.1 N 6416384 S++ M@1460NW@ONNT@0 {(M@1460T@0W}
NetBSD 1.6, 1.6.1 N 6416384 S++ M@1460NW@ONNT@0 {M@1460TW}
Netware 4.11 *° N 1282000 S++ M@1460 {C.NewM@1460TW}
Netware 4.11 N 12832768 S++ M@1460 {C.NewM@1460TW}
Netware 4.11 N 12865535 S++ M@1460 {C.NewM@1460TW}
Netware 4.11 N 12832768 S++ M@1459 {(M@1459}
Netware 4.11 N 12865535 S++ M@1459 {(M@1459}
Netware 4.11 N 1282000 S++ M@1460 {M@1460}
Netware 4.11 N 12832768 S++ M@1460 {M@1460}
Netware 4.11 N 12865535 S++ M@1460 {M@1460}
Netware 4.11 N 1282000 S++ M@1460 {M@1460S}
Netware 4.11 N 12832768 S++ M@1460 {M@1460S}
Netware 4.11 N 12865535 S++ M@1460 {M@1460S}
Netware 4.11 N 1282000 S++ M@1460 {(M@1460STW}
Netware 4.11 N 12832768 S++ M@1460 {(M@1460STW}
Netware 4.11 N 12865535 S++ M@1460 {(M@1460STW}

> Examination of the traffic traces indicate that the WIN value of Netware 4.11 isinfluence by the network service running.

PassiveTest TCP_SYNACK

ResultOSKey DF | TTL WIN AckNb | TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts
Netware 4.11 N 12832768 S++ M@1460 {(M@1460T@0W}
Netware 4.11 N 12865535 S++ M@1460 {(M@1460T@0W}
Netware 4.11 N 1282000 S++ M@1460 {(M@1460TW}
Netware 4.11 N 12832768 S++ M@1460 {(M@1460TW}
Netware 4.11 N 12865535 S++ M@1460 {(M@1460TW}
Netware 4.11 sp9 * \4 1286144 S++ M@1460 {C.NewM@1460TW}
Netware 4.11 sp9 Y 1286144 S++ M@1459 {(M@1459}
Netware 4.11 sp9 Y 1286144 S++ M@1460 {(M@1460}
Netware 4.11 sp9 Y 1286144 S++ M@1460 {(M@1460S}
Netware 4.11 sp9 Y 1286144 S++ M@1460 {M@1460STW}
Netware 4.11 sp9 Y 1286144 S++ M@1460 {M@1460T@0W}
Netware 4.11 sp9 Y 1286144 S++ M@1460 {(M@1460TW}
Netware 5 *° \ 12832768 S++ M@1460 {C.NewM@1460TW}
Netware 5 Y 12865535 S++ M@1460 {C.NewM@1460TW}
Netware 5 Y 1288191 S++ M@1460 {C.NewM@1460TW}
Netware 5 Y 12832768 S++ M@1459 {(M@1459}
Netware 5 Y 12865535 S++ M@1459 {(M@1459}
Netware 5 Y 12832768 S++ M@1460 {M@1460}
Netware 5 Y 12865535 S++ M@1460 {M@1460}
Netware 5 Y 1288191 S++ M@1460 {M@1460}
Netware 5 Y 12832768 S++ M@1460 {M@1460S}
Netware 5 \ 12865535 S++ M@1460 {(M@1460S}
Netware 5 M 1288191 S++ M@1460 {(M@1460S}
Netware 5 M 12832768 S++ M@1460 {(M@1460STW}
Netware 5 M 12865535 S++ M@1460 {(M@1460STW}
Netware 5 M 1288191 S++ M@1460 {(M@1460STW}
Netware 5 M 12832768 S++ M@1460 {(M@1460T@0W}
Netware 5 \ 12865535 S++ M@1460 {(M@1460T@0W}
Netware 5 M 12832768 S++ M@1460 {(M@1460TW}

LTT

> The service pack sp9 of Netware 4.11 seems to prevent variation in the WIN value.
%8 Examination of the traffic traces indicate that the WIN value of Netware 5 is influence by the network service running.

8TT

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
Netware 5 Y 12865535 S++ M@1460 {M@1460TW}
Netware 5 Y 1288191 S++ M@1460 {M@1460TW}
Netware 5 sp6a > Y 1286144 S++ M@1460 {C.NewM@1460TW}
Netware 5 sp6a Y 1286144 S++ M@1459 {(M@1459}
Netware 5 sp6a Y 1286144 S++ M@1460 {M@1460}
Netware 5 sp6a Y 1286144 S++ M@1460 {M@1460S}
Netware 5 sp6a \ 1286144 S++ M@1460 {(M@1460STW}
Netware 5 sp6a Y 1286144 S++ M@1460 {(M@1460T @0OW}
Netware 5 sp6a \ 1286144 S++ M@1460 {(M@1460TW}
Netware 5.1 \4 12865535 S++ M@1460 {C.NewM@1460TW}
Netware 5.1 Y 12818191 S++ M@1460 {C.NewM@1460TW}
Netware 5.1 Y 128/65535 S++ M@1459 {M@1459}
Netware 5.1 Y 12818191 S++ M@1459 {M@1459}
Netware 5.1 Y 128/65535 S++ M@1460 {M@1460}
Netware 5.1 Y 12818191 S++ M@1460 {M@1460}
Netware 5.1 Y 128/65535 S++ M@1460 {(M@1460S}
Netware 5.1 Y 12818191 S++ M@1460 {(M@1460S}
Netware 5.1 Y 128|65535 S++ M@1460 {(M@1460STW}
Netware 5.1 Y 1288191 S++ M@1460 {M@1460STW}
Netware 5.1 Y 12865535 S++ M@1460 {(M@1460T@0W}
Netware 5.1 Y 1288191 S++ M@1460 {(M@1460T@0W}
Netware 5.1 Y 12865535 S++ M@1460 {M@1460TW}
Netware 5.1 Y 1288191 S++ M@1460 {M@1460TW}
Netware 5.1 sp6, 6, 6 sp3 ** Y 1286144 S++ M@1460W@0ON {C.NewM@1460TW}

> The service pack sp6a of Netware 5 seems to prevent variation in the WIN value.
% Examination of the traffic traces indicate that the WIN value of Netware 5.1 isinfluence by the network service running.

%! The service pack sp6 of Netware 5.1 seems to prevent variations in the WIN value. The WIN value of Netware 6 does not seem to be influence

by the network service running whether a service pack isinstalled or not.

6TT

PassiveTest TCP_SYNACK

ResultOSKey DF | TTL WIN AckNb | TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts
Netware 5.1 sp6, 6, 6 sp3 Y 1286144 S++ M@1459 {(M@1459}
Netware 5.1 sp6, 6, 6 sp3 Y 1286144 S++ M@1460 {(M@1460}
Netware 5.1 sp6, 6, 6 sp3 Y 1286144 S++ M@1460SNN {M@1460S}
Netware 5.1 sp6, 6, 6 sp3 Y 1286144 S++ M@1460W@O0NSNN {M@1460STW}
Netware 5.1 sp6, 6, 6 sp3 Y 1286144 S++ M@1460W@0N {(M@1460T@O0W}
Netware 5.1 sp6, 6, 6 sp3 Y 1286144 S++ M@1460W@0N {M@1460TW}

0ct

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
OpenBSD 2.0,2.1,22,23,24 N 64{12(MSS) S++ M@ 1460NW@ONNT {C.NewM@1460TW}
OpenBSD 2.0, 2.1,2.2,2.3,2.4 N 64{12(MSSReq)* S ++ M@1460 (M@1459}
OpenBSD 2.0, 2.1,2.2,2.3,2.4 N 64{12(MSS) S++ M@1460 {(M@1460}
OpenBSD 2.0, 2.1,2.2,2.3,2.4 N 64{12(MSS) S++ M@1460 {(M@1460S}
OpenBSD 2.0,2.1,22,23,24 N 64{12(MSS) S++ M@ 1460NW@ONNT {(M@1460STW}
OpenBSD 2.0,2.1,22,23,24 N 64{12(MSS) S++ M@ 1460NW@ONNT {M@1460T @0W}
OpenBSD 2.0,2.1,22,23,24 N 64{12(MSS) S++ M@ 1460NW@ONNT {(M@1460TW}
OpenBSD 2.5, 2.6 N 64{12(MSS) S++ M@ 1448NW@ONNT {C.NewM@1460TW}
OpenBSD 2.5, 2.6 N 64[12(MSSReq) [S++ M@1460 (M@1459}
OpenBSD 2.5, 2.6 N 64{12(MSS) S++ M@1460 {(M@1460}
OpenBSD 2.5, 2.6 N 64/12(MSS) S++ M@1460 {(M@1460S}
OpenBSD 2.5,2.6 N 64{12(MSS) S++ M@1448NW@ONNT {M@1460STW}
OpenBSD 2.5,2.6 N 64{12(MSS) S++ M@1448NW@ONNT {(M@1460T@0W}
OpenBSD 2.5,2.6 N 64{12(MSS) S++ M@1448NW@ONNT {M@1460TW}
OpenBSD 2.7 N 64{12(MSS) S++ M@1448NW@ONNT {C.NewM@1460TW}
OpenBSD 2.7 N 64{12(MSSReq) [S++ M@1460 {(M@1459}
OpenBSD 2.7 N 64{12(MSS) S++ M@1460 {(M@1460}
OpenBSD 2.7 N 64{12(MSS) S++ M@1460NNS {M@1460S}
OpenBSD 2.7 N 64{12(MSS) S++ M@1448NNSNW@ONNT {M@1460STW}
OpenBSD 2.7 N 64{12(MSS) S++ M@1448NW@ONNT {(M@1460T @0W}
OpenBSD 2.7 N 64{12(MSS) S++ M@1448NW@ONNT {M@1460TW}
OpenBSD 2.8,2.9,3.0,3.1,3.2,33 N 6417376 S++ M@1460NW@ONNT {C.NewM@1460TW}
OpenBSD 2.8,2.9,3.0,3.1,3.2,33 N 6412(MSSReq) [S++ M@1460 {(M@1459}
OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 N 64{12(MSS) S++ M@1460 {(M@1460}

62 “MSSReq” means that the TCP Window Size (WIN) in the response is related to TCP Maximum Segment Size (MSS) advertized in the request
(i.e. M@1459 of the SYN packet). It can be infer from this signature that when the WIN value in a SYN/ACK transmitted by OpenBSD is related
to aMSS value, the influence comes from the M SS advertized in the SY N rather than from the M SS value advertized in the SYN/ACK response.

PassiveTest TCP_SYNACK

ResultOSKey DF | TTL WIN AckNb | TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts
OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2,3.3 N 64/12(MSS) S++ M@1460NNS {(M@1460S}
OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2,3.3 N 64|117376 S++ M@1460NNSNW@ONNT {(M@1460STW}
OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2,3.3 N 64|117376 S++ M@1460NW@ONNT {(M@1460T @0W}
OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2,3.3 N 64|117376 S++ M@1460NW@ONNT {(M@1460TW}
QNX RTP 4 N 64/8192 S++ M@1460 {C.NewM@1460TW}
QNX RTP 4 N 64|8192 S++ M@1460 {M@1459}
QNX RTP 4 N 64|8192 S++ M@1460 {M@1460}
QNX RTP 4 N 64|8192 S++ M@1460 {(M@1460S}
QNX RTP 4 N 64/8192 S++ M@1460 {(M@1460STW}
QNX RTP 4 N 64/8192 S++ M@1460 {(M@1460T@0W}
QNX RTP 4 N 64/8192 S++ M@1460 {M@1460TW}
QNX RTP 6.0 N 64/8192 S++ M@1460 {C.NewM@1460TW}
QNX RTP 6.0 N 64/8192 S++ M@1460 {(M@1459}
QNX RTP 6.0 N 64/8192 S++ M@1459 * {(M@1460}
QNX RTP 6.0 N 64)8192 S++ M@1460 {(M@1460}
QNX RTP 6.0 N 64/8192 S++ M@1459 {M@1460S}
QNX RTP 6.0 N 64/8192 S++ M@1460 {M@1460S}
QNX RTP 6.0 N 64)8192 S++ M@1459 {M@1460STW}
QNX RTP 6.0 N 64)8192 S++ M@1460 {M@1460STW}
QNX RTP 6.0 N 64/8192 S++ M@1460 {(M@1460T@0W}
QNX RTP 6.0 N 648192 S++ M@1459 {M@1460TW}
QNX RTP 6.0 N 64/8192 S++ M@1460 {(M@1460TW}
QNXRTP 6.1, 6.2, 6.2.1 N 64|116384 S++ M@1460NW@ONNT {C.NewM@1460TW}
QNXRTP 6.1, 6.2, 6.2.1 N 64/116384 S++ M@1460 {M@1459}
QNXRTP 6.1, 6.2, 6.2.1 N 64|116384 S++ M@1460 {M@1460}
QNXRTP 6.1, 6.2, 6.2.1 N 64|116384 S++ M@1460 {(M@1460S}
QNXRTP 6.1, 6.2, 6.2.1 N 64|116384 S++ M@1460NW@ONNT {(M@1460STW}
QNXRTP 6.1, 6.2, 6.2.1 N 64/116384 S++ M@1460NW@ONNT {(M@1460T @0W}
QNXRTP 6.1, 6.2, 6.2.1 N 64/116384 S++ M@1460NW@ONNT {(M@1460TW}

T

% QNX 6.0 sometimes advertize a Mazimum Segment Size (MSS) of 1459 in SYN and SYN/ACK packets. We did not identify what causes this
behaviour.

[4A)

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
SunOS 5.5,5.5.1 Y [255 |6(MSS) S++ M@1460 {C.NewM@1460TW}
SunOS 5.5,5.5.1 Y [255 [7(MSS) S++ M@1459 {(M@1459}
SunOS 5.5,5.5.1 Y [255 |6(MSS) S++ M@1460 {M@1460}
SunOS 5.5,5.5.1 Y [255 |6(MSS) S++ M@1460 {M@1460S}
SunOS 5.5,5.5.1 Y [255 |6(MSS) S++ M@1460 {M@1460STW}
SunOS 5.5,5.5.1 Y [255 |6(MSS) S++ M@1460 {(M@1460T@0W}
SunOS 5.5, 5.5.1 Y 255 |6(MSS) S++ M@1460 (M@1460TW}
SunOS 5.6 * Y 255 10136 S++ NNTNW@OM@1460 {C.NewM@1460TW}
SunOS 5.6 Y 255 65535 S++ NNTNW@1M@1460 {C.NewM@1460TW}
SunOS 5.6 Y [255 {44(MSS) S++ M@1459 {(M@1459}
SunOS 5.6 Y [255 [7(MSS) S++ M@1459 (M@1459}
SunOS 5.6 Y [255 {44(MSS) S++ M@1460 {(M@1460}
SunOS 5.6 Y 255 |6(MSS) S++ M@1460 {(M@1460}
SunOS 5.6 Y [255 {44(MSS) S++ M@1460 {(M@1460S}
SunOS 5.6 Y [255 |6(MSS) S++ M@1460 {(M@1460S}
SunOS 5.6 Y 255 10136 S++ NNTNW@OM@1460 {(M@1460STW}
SunOS 5.6 Y 255 65535 S++ NNTNW@1M@1460 {(M@1460STW}
SunOS 5.6 Y 255 10136 S++ NNTNW@OM@1460 {(M@1460T @OW}
SunOS 5.6 Y [255 65535 S++ NNTNW@1M@1460 {(M@1460T@0W}
SunOS 5.6 Y [255 10136 S++ NNTNW@0M@1460 {M@1460TW}
SunOS 5.6 Y [255 65535 S++ NNTNW@1M@1460 {M@1460TW}
SunOS 5.7 Y [255 10136 S++ NNTNW@0M@1460 {C.NewM@1460TW}
SunOS 5.7 Y [255 [7(MSS) S++ M@1459 {M@1459}
SunOS 5.7 Y [255 |6(MSS) S++ M@1460 {M@1460}
SunOS 5.7 Y [255 |6(MSS) S++ M@1460 {M@1460S}
SunOS 5.7 Y [255 10136 S++ NNTNW@0M@1460 {M@1460STW}

% Examination of traffic traces indicates that the WIN value in SYN/ACK packet produced by SunOS 5.6 may be influenced by the network

service running, the WIN value advertized in the SYN and the presence of the TCP Window scale option in the SYN packet.

PassiveTest TCP_SYNACK

ResultOSKey DF | TTL WIN AckNb | TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts
SunOS 5.7 Y 255 (10136 S++ NNTNW@OM@1460 {(M@1460T @0OW}
SunOS 5.7 Y 255 (10136 S++ NNTNW@O0OM@1460 {M@1460TW}
SunOS 5.8 Y 60 % 24616 S++ NNTNW@O0OM@1460 {C.NewM@1460TW}
SunOS 5.8 Y 64 24616 S++ NNTNW@O0OM@1460 {C.NewM@1460TW}
SunOS 5.8 Y |60 [17(MSSReq)*S++ M@1460 {(M@1459}
SunOS 5.8 Y |64 [17(MSSReq) |S++ M@1460 (M@1459}
SunOS 5.8 Y |60 |[17(MSS) S++ M@1460 {(M@1460}
SunOS 5.8 Y |64 [17(MSS) S++ M@1460 {(M@1460}
SunOS 5.8 Y |60 [17(MSS) S++ NNSM@1460 {(M@1460S}
SunOS 5.8 Y 64 [L7(MSS) S++ NNSM@ 1460 {M@1460S}
SunOS 5.8 Y 60 [24616 S++ NNTNW@ONNSM@1460 {M@1460STW}
SunOS 5.8 Y 64 24616 S++ NNTNW@ONNSM@1460 {M@1460STW}
SunOS 5.8 Y 60 24616 S++ NNTNW@OM@ 1460 {(M@1460T@0W}
SunOS 5.8 Y 64 24616 S++ NNTNW@OM@ 1460 {(M@1460T@0W}
SunOS 5.8 Y 60 [24616 S++ NNTNW@OM@ 1460 {IM@1460TW}
SunOS 5.8 Y 64 24616 S++ NNTNW@OM@1460 {IM@1460TW}
SunOS 5.9 Y 60 49232 S++ NNTM@1460NW @0 {C.NewM@1460TW}
SunOS 5.9 Y 64 49232 S++ NNTM@1460NW @0 {C.NewM@1460TW}
SunOS 5.9 Y |60 [34(MSSReq) |S++ M@1460 (M@1459}
SunOS 5.9 Y |64 [34(MSSReq) |S++ M@1460 (M@1459}
SunOS 5.9 Y 60 [34(MSS) S++ M@1460 {(M@1460}
SunOS 5.9 Y |64 [34(MSS) S++ M@1460 {(M@1460}
SunOS 5.9 Y |60 [34(MSS) S++ M@1460NNS {(M@1460S}

(XA

% Examination of the traffic tracesindicates that the TTL valuein SYN/ACK packet of SunOS 5.8 and 5.9 seems to depend on the network service
running.

% “MSSReq” means that the TCP Window Size (WIN) in the response is related to TCP Maximum Segment Size (MSS) advertized in the request
(i.e. M@1459 of the SYN packet). It can be infer from this signature that when the WIN value in a SYN/ACK transmitted by SunOS 5.8 or 5.9 is
related to a MSS value, the influence comes from the MSS advertized in the SYN rather than from the MSS value advertized in the SYN/ACK
response.

vl

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
SunOS 5.9 Y |64 [34(MSS) S++ M@1460NNS {M@1460S}
SunOS 5.9 Y |60 49232 S++ NNTM@1460NW@ONNS {M@1460STW}
SunOS 5.9 Y |64 49232 S++ NNTM@1460NW@ONNS {M@1460STW}
SunOS 5.9 Y |60 49232 S++ NNTM@1460NW@0 {(M@1460T@0W}
SunOS 5.9 Y |64 49232 S++ NNTM@1460NW@0 {(M@1460T@0W}
SunOS 5.9 Y |60 49232 S++ NNTM@1460NW@0 {M@1460TW}
SunOS 5.9 Y 64 149232 S++ NNTM@1460NW@0 {M@1460TW}
SunOS (Intel) 5.8 Y 60 [33304 S++ NNTNW@1M@1460 {C.NewM@1460TW}
SunOS (Intel) 5.8 Y 64 33304 S++ NNTNW@1M@1460 {C.NewM@1460TW}
SunOS (Intel) 5.8 Y |60 [44(MSSReq) [S++ M@1460 (M@1459}
SunOS (Intel) 5.8 Y |64 |44(MSSReq) [S++ M@1460 (M@1459}
SunOS (Intel) 5.8 Y |60 144(MSS) S++ M@1460 {M@1460}
SunOS (Intel) 5.8 Y |64 |44(MSS) S++ M@1460 {M@1460}
SunOS (Intel) 5.8 Y |60 |44(MSS) S++ NNSM@1460 {(M@1460S}
SunOS (Intel) 5.8 Y |64 144(MSS) S++ NNSM@1460 {(M@1460S}
SunOS (Intel) 5.8 Y 60 [33304 S++ NNTNW@1NNSM@1460 {(M@1460STW}
SunOS (Intel) 5.8 Y 64 33304 S++ NNTNW@1NNSM@1460 {(M@1460STW}
SunOS (Intel) 5.8 Y 60 [33304 S++ NNTNW@1M@1460 {(M@1460T @OW}
SunOS (Intel) 5.8 Y 64 [33304 S++ NNTNW@1M@1460 {(M@1460T@0W}
SunOS (Intel) 5.8 Y |60 [33304 S++ NNTNW@1M@1460 {(M@1460TW}
SunOS (Intel) 5.8 Y 64 33304 S++ NNTNW@1M@1460 {(M@1460TW}
\Windows 95, NT 3.51 Y |32 |6(MSS) S++ M@1460 {C.NewM@1460TW}
Windows 95, NT 3.51 Y 32 |6(MSSReq) [S++ M@1460 {(M@1459}
Windows 95, NT 3.51 Y 32 |6(MSS) S++ M@1460 {(M@1460}
Windows 95, NT 3.51 Y [32 |6(MSS) S++ M@1460 {M@1460S}
Windows 95, NT 3.51 Y [32 |6(MSS) S++ M@1460 {M@1460STW}
Windows 95, NT 3.51 Y [32 |6(MSS) S++ M@1460 {(M@1460T@0W}
Windows 95, NT 3.51 Y [32 6(MSS) S++ M@1460 {(M@1460TW}

1A)

PassiveTest TCP_SYNACK

ResultOSKey DF | TTL WIN AckNb | TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts
Windows NT 4 standard, sp3, sp4, sp6 Y 128 |6(MSS) S++ M@1460 {C.NewM@1460TW}
Windows NT 4 standard, sp3, sp4, sp6 Y 128 |6(MSSReq) [S++ M@1460 {(M@1459}
Windows NT 4 standard, sp3, sp4, sp6 Y 128 |6(MSS) S++ M@1460 {(M@1460}
\Windows NT 4 standard, sp3, sp4, sp6 Y 128 |6(MSS) S++ M@1460 {M@1460S}
\Windows NT 4 standard, sp3, sp4, sp6 Y 128 |6(MSS) S++ M@1460 {M@1460STW}
\Windows NT 4 standard, sp3, sp4, sp6 Y 128 |6(MSS) S++ M@1460 {(M@1460T@O0W}
\Windows NT 4 standard, sp3, sp4, sp6 Y 128 |6(MSS) S++ M@1460 {(M@1460TW}
Windows 98, 98 SE Y 128 [6(MSS) S++ M@1460 {C.NewM@1460TW}
\Windows 98, 98 SE Y 128 [6(MSSReq) [S++ M@1460 {(M@1459}
\Windows 98, 98 SE Y 128 [6(MSS) S++ M@1460 {M@1460}
\Windows 98, 98 SE Y 128 [6(MSS) S++ M@1460NNS {(M@1460S}
\Windows 98, 98 SE Y 128 [6(MSS) S++ M@1460NNS {(M@1460STW}
\Windows 98, 98 SE Y 128 [6(MSS) S++ M@1460 {(M@1460T@0W}
\Windows 98, 98 SE Y 128 [6(MSS) S++ M@1460 {(M@1460TW}
Windows Millennium standard Y 128 [12(MSS) S++ M@1460NW@ONNT@0 {C.NewM@1460TW}
Windows Millennium standard Y 128 |12(MSSReq) [S++ M@1460 {(M@1459}
Windows Millennium standard Y 128 [12(MSS) S++ M@1460 {M@1460}
Windows Millennium standard Y 128 [12(MSS) S++ M@1460NNS {M@1460S}
Windows Millennium standard Y 128 [12(MSS) S++ M@1460NW@ONNT@ONNS M@1460STW}
Windows Millennium standard Y 128 [12(MSS) S++ M@1460NW@ONNT@0 {M@1460T@0W}
Windows Millennium standard Y 128 [12(MSS) S++ M@ 1460NW@ONNT@O0 {(M@1460TW}
\Windows 2000 standard, sp2, sp3, sp4 Y 128 [12(MSS) S++ M@1460NW@ONNT@0 {C.NewM@1460TW}
\Windows 2000 standard, sp2, sp3, sp4 Y 128 [12(MSSReq) [S++ M@1460 {M@1459}
\Windows 2000 standard, sp2, sp3, sp4 Y 128 [12(MSS) S++ M@1460 {M@1460}
\Windows 2000 standard, sp2, sp3, sp4 Y 128 [12(MSS) S++ M@1460NNS {M@1460S}
\Windows 2000 standard, sp2, sp3, sp4 Y 128 [12(MSS) S++ M@1460NW@ONNT@ONNS {M@1460STW}
\Windows 2000 standard, sp2, sp3, sp4 Y 128 |12(MSS) S++ M@1460NW@ONNT@0 {(M@1460T@0W}
Windows 2000 standard, sp2, sp3, sp4 Y 128 |12(MSS) S++ M@1460NW@ONNT@0 {(M@1460TW}
Windows Net standard, XP Home, XP Professional Y 128 |12(MSS) S++ M@1460NW@ONNT@0 {C.NewM@1460TW}
Windows Net standard, XP Home, XP Professional Y 128 |12(MSSReq) [S++ M@1460 {(M@1459}

9T

PassiveTest TCP_SYNACK

ResultOSKey DF |TTL WIN AckNb |TCPecn TCPopts SYN_TCPecn| SYN_SetOfTCPopts
\Windows Net standard, XP Home, XP Professional Y 128 [12(MSS) S++ M@1460 {M@1460}
\Windows Net standard, XP Home, XP Professional Y 128 [12(MSS) S++ M@1460NNS {(M@1460S}
\Windows Net standard, XP Home, XP Professional Y 128 [12(MSS) S++ M@ 1460NW@ONNT@ONNS {M@1460STW}
\Windows Net standard, XP Home, XP Professional Y 128 [12(MSS) S++ M@ 1460NW@ONNT@0 {(M@1460T @0W}
Windows Net standard, XP Home, XP Professional Y 128 |12(MSS) S++ M@1460NW@ONNT@0 {IM@1460TW}
Windows 2003 Server standard Y 128 [12(MSS) S++ M@1460NW@ONNT@0 {C.NewM@1460TW}
Windows 2003 Server standard Y 128 |12(MSSReq) [S++ M@1460 {(M@1459}
Windows 2003 Server standard Y 128 |12(MSS) S++ M@1460 {(M@1460}
Windows 2003 Server standard Y 128 |12(MSS) S++ M@1460NNS {M@1460S}
Windows 2003 Server standard Y 128 |12(MSS) S++ M@1460NW@ONNT@ONNS {M@1460STW}
Windows 2003 Server standard Y 128 [12(MSS) S++ M@ 1460NW@ONNT@0 {(M@1460T @0W}
Windows 2003 Server standard Y 128 [12(MSS) S++ M@1460NW@ONNT@O0 {(M@1460TW}

Table 21. PassiveTest_TCP_RSTACK

PassiveTest_TCP_RSTACK

SYN
oS DF TTL WIN | AckNb [TCPecn| Flag |TCPopts|{TCPecn
BEOS 5 N 255 0 S++ AR
FreeBSD 2.0.5,2.1.0,2.15,2.1.6,2.1.7.1,2.2.0,2.2.1,
2.2.2,2.2.5,2.2.6,2.2.7,2.2.8 N 64 0 S++ AR
FreeBSD 3.0, 3.1, 3.2,3.3,3.4,35.1 N 64 0 S++ AR
FreeBSD 4.0,4.1,4.1.1,4.2,4.3,4.4,4.5, 4.6,4.6.2, 4.7,
4.8,5.0,5.1 N 64 0 S++ AR
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 255 0 S++ AR
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5, 2.2.5-15,
2.2.6,2.2.7,2.2.8,2.2.9 N 255 0 S++ AR
Linux 2.2.10,2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14,
2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 N 255 0 S++ AR
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22,2.2.23, 2.2.24 N 255 0 S++ AR
Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.4.4, 2.4.4-4GB,
2.4.5,2.4.6,2.4.7,2.4.8,2.4.9 Y 255 0 S++ AR
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14,
2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB Y 255 0 S++ AR
Linux 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8,
2.4.21-0.13mdk Y 64 0 S++ AR
echoed
MacOS 7.5.3,7.5.5,7.6,7.6.1, 8.0, 8.1 Y 7 0 S++ AR
echoed
MacOS 9.0 i 255 o S++ AR
MacOS 9.1,9.2.1,9.2.2 Y 255 0 S++ AR
MacOS 10 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5 N 64 0 S++ AR
echoed
MacOS 10 10.2.6 [64 0 S++ AR

" MacOS 7 to 8 and SunOS 5.5 to 5.7 echo the TTL value from the SY N packet.
% Mac OS 9.0 appears to respond differently from the other Mac OS 9.x versions. Mac
0OS 9.0 echoes the IP DF bit setting of the SYN. Mac OS 9.1, 9.2.1 and 9.2.2 do not

echo the DF hit.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

127

PassiveTest_TCP_RSTACK

(O DF TTL WIN | AckNb [TCPecn| Flag |[TCPopts T(?I;{(!:\::n
NetBSD 1.1 N 64 0 S++ IAR
NetBSD 1.2,1.2.1 N 64 0 S++ IAR
NetBSD 1.3,1.3.1,1.3.2,1.3.3 N 64 0 S++ IAR
NetBSD 1.4,1.4.1,1.4.2,1.4.3 N 64 0 S++ IAR
NetBSD 1.5,1.5.1,1.5.2,15.3 N 64 0 S++ IAR
NetBSD 1.6, 1.6.1 N 64 0 S++ IAR
Netware 4.11 N 128 0 S++ AR
Netware 4.11 sp9 Y 128 0 S++ AR
Netware 5, 5 sp6a Y 128 0 S++ IAR
Netware 5.1, 5.1 sp6 Y 128 0 S++ AR
Netware 6, 6 sp3 Y 128 0 S++ IAR
OpenBSD 2.0,2.1,2.2,2.3,24,25,26,2.7,2.8 N 64 0 S++ IAR
OpenBSD 2.9 Y 64 0 S++ AR
OpenBSD 3.0, 3.1, 3.2, 3.3 Y 64 0 S++ IAR
QNX RTP 4, 6.0 N 64 lechoed |S++ AR Echoed
QNX RTP 6.1, 6.2, 6.2.1 N 64 0 S++ IAR
SunOS 5.5, 5.5, 5.6, 5.7 Y echoed™0 S++ AR
SunOS 5.8 \4 64 0 S++ AR
SunOS 5.9 Y 64 0 S++ AR
SunOS (Intel) 5.8 Y 64 (o] S++ AR
\Windows 95 N 32 0 S++ AR
\Windows NT 3.51 standard N 32 0 S++ AR

% Examination of the traffic traces reveals that Mac OS 10.2.6 echoed the IP DF bit
setting of the SYN. Mac OS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,
10.2.2, 10.2.3, 10.2.4, 10.2.5 did not echo the DF hit.
" MacOS 7 to 8 and SunOS 5.5 to 5.7 echo the TTL value from the SY N packet.

128

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_TCP_RSTACK

(O DF TTL WIN | AckNb [TCPecn| Flag |[TCPopts T(?I;{(!:\::n
\Windows 98, 98 SE N 128 0 S++ AR
\Windows NT 4 standard, sp3, sp4, sp6 N 128 0 S++ AR
\Windows Millennium standard N 128 0 S++ AR
\Windows 2000 standard, sp2, sp3, sp4 N 128 0 S++ AR
\Windows XP Home, Professional N 128 0 S++ AR
\Windows Net standard N 128 0 S++ AR
\Windows 2003 Server standard N 128 (o] S++ AR
DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 129

0€T

Table 22. PassiveTest_ICMP_Unreach

PassiveTest ICMP_Unreach

oS DF TTL TOS UDPLen | InteglPLen | IntegIPID InteglPFlags InteglPck IntegUDPck
FreeBSD 2.0.5,2.1.0, 2.1.5,2.1.6, 2.1.7.1 echoed 255 0 8 Y 0
FreeBSD 2.2.0,2.2.1,2.2.2,2.2.5,2.2.6,2.2.7, 2.2.8,
2.2.9 echoed 255 0 8 Y nonzero
FreeBSD 3.0, 3.1, 3.2, 3.3,3.4,35.1 echoed 255 0 8 Y nonzero
FreeBSD 4.0, 4.1 echoed 255 (0] 8 Y nonzero
FreeBSD 4.1.1, 4.2, 4.3 echoed 255 0 8 Y nonzero
FreeBSD 4.4,4.5,4.6,4.6.2,4.7,4.8,5.0,5.1 echoed 64 0 8 Y nonzero
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 64 192 all Y nonzero
Linux 2.2.0,2.2.1,2.2.2,2.2.3, 2.2.4,2.2.5, 2.2.5-15,
2.2.6,2.2.7,2.2.8,2.2.9,2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17,2.2.18, 2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21,
2.2.22,2.2.23,2.2.24 N 255 192 all Y nonzero
Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.4.4,2.4.4-
4GB Y 255 192 all Y nonzero
Linux 2.4.5.2.4.6,2.4.7,2.4.8,2.4.9 N 255 192 all Y nonzero
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14,2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-
4GB N 255 192 all Y nonzero

TET

PassiveTest_ICMP_Unreach

(OS] DF TTL TOS UDPLen | InteglPLen | InteglPID | InteglPFlags | InteglPck | IntegUDPck

Linux 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8,

2.4.21-0.13mdk, N 64 192 all Y nonzero
MacOS 7.5.3,7.5.5,7.6,7.6.1, 8.0, 8.1 Y 255 0 64 Y nonzero
MacOS 9 9.0 N 255 0 64 Y nonzero
MacOS 99.1,9.2.1,9.2.2 Y 255 0 64 Y nonzero
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5 |echoed 255 0 8 Y nonzero
MacOS 10.2.1, 10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 |echoed 64 0 8 Y nonzero
NetBSD 1.1,1.2,1.2.1 echoed 255 0 te] (¢
NetBSD 1.3,1.3.1,1.3.2,1.3.3 echoed 255 0 8 Y 0
NetBSD 1.4,1.4.1,1.4.2,1.4.3 N 255 0 8 Y nonzero
NetBSD 1.5,1.5.1,1.5.2,1.5.3 N 255 0 8 Y nonzero
NetBSD 1.6,1.6.1 N 255 0 8 Y nonzero
Netware 4.11, 4.11 sp9 N 128 0 8 Y nonzero
Netware 5, 5 sp6a N 128 0 3 Y nonzero
Netware 5.1, 5.1 sp6 N 128 0 8 Y nonzero
Netware 6, 6 sp3 N 128 0 te] Y nonzero
OpenBSD 2.0, 2.1 echoed 255 0 3 (0]

CeT

PassiveTest ICMP_Unreach

oS DF TTL TOS UDPLen | InteglPLen | InteglPID | InteglPFlags | InteglPck | IntegUDPck

OpenBSD 2.2,2.3,2.4 echoed 255 8 Y 0

OpenBSD 2.5 N 255 3 Y nonzero
OpenBSD 2.6, 2.7, 2.8, 2.9 N 255 8 - nonzero
OpenBSD 3.0, 3.1, 3.2, 3.3 N 255 8 - nonzero
QNX RTP 6.1 N 255 te] Y 0

QNX RTP 6.2, 6.2.1 N 255 8 Y nonzero
SunOS 5.5,5.5.1,5.6,5.7,5.8,5.9 Y 255 64 Y nonzero
SunOS (Intel) 5.8 Y 255 64 Y nonzero
\Windows 95 N 32 8 Y nonzero
\Windows NT 3.51 standard N 32 8 Y nonzero
\Windows 98, 98 SE N 128 8 Y nonzero
\Windows NT 4 standard, sp3, sp4, sp6 N 128 3 Y nonzero
\Windows Millennium standard N 128 8 Y nonzero
\Windows 2000 standard, sp2, sp3, sp4 N 128 3 Y nonzero
\Windows XP Home, Professional N 128 8 Y nonzero

€eT

\Windows Net standard

128

all

nonzero

\Windows 2003 Server standard

128

all

nonzero

Table 23. PassiveTest_ICMP_Echo

PassiveTest ICMP_Echo

oS Resp DF TTL TOS IPID ICMPCode
BEOS 5 Y N 2550 ™ honzero |echoed
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1,2.2.0, 2.2.1, 2.2.2, 2.2.5,
2.2.6,2.2.7,2.2.8 Y lechoed 255lechoed nonzero |echoed
FreeBSD 3.0, 3.1,3.2,3.3,3.4,35.1 Y lechoed 255lechoed nonzero |echoed
FreeBSD 4.0,4.1,4.1.1,4.2,4.3 Y lechoed 255lechoed nonzero |echoed
FreeBSD 4.4,4.5,4.6,4.6.2,4.7,4.8,5.0,5.1 Y lechoed 64echoed nonzero |echoed
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y N 64echoed nonzero |echoed
Linux 2.2.0,2.2.1,2.2.2,2.23,2.2.4,2.25,2.2.5-15,2.2.6,2.2.7,
2.2.8,2.2.9 Y N 255lechoed nonzero |echoed
Linux 2.2.10,2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5,
2.2.15,2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 Y N 255lechoed nonzero |echoed
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22,2.2.23, 2.2.24 Y N 255lechoed nonzero |echoed
Linux 2.4.0,2.4.1,24.2,2.4.2-2,2.4.3,2.4.4,2.4.4-4GB Y Y 255echoed 0 lechoed
Linux 2.4.5.2.4.6,2.4.7,2.4.8,2.4.9 Y N 255lechoed nonzero |echoed
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16,2.4.17,2.4.18, 2.4.18-3, 2.4.18-4GB Y N 255lechoed nonzero |echoed
Linux 2.4.18-14 Y N 64echoed nonzero |echoed
Linux 2.4.19, 2.4.19-4GB Y N 64lechoed |nonzero |echoed
Linux 2.4.20, 2.4.20-8, 2.4.21-0.13mdk Y N 64lechoed nonzero |echoed
MacOS 7.5.3,7.5.5,7.6,7.6.1 Y Y 255lechoed nonzero |echoed
MacOS 8.0, 8.1 Y Y 255lechoed nonzero |echoed
MacOS 9.0 Y lechoed 255lechoed |nonzero lechoed
MacOS 9.1, 9.2.1, 9.2.2 Y Y 255lechoed nonzero |echoed
MacOS 10.0.0, 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5 Y lechoed 255lechoed nonzero |echoed
MacOS 10.2.1, 10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 Y lechoed 64echoed nonzero |lechoed
NetBSD 1.1 Y lechoed 255lechoed nonzero |echoed
NetBSD 1.2,1.2.1 Y lechoed 255lechoed nonzero |lechoed
NetBSD 1.3,1.3.1,1.3.2,1.3.3 Y lechoed 255lechoed nonzero |echoed
NetBSD 1.4,1.4.1,1.4.2,1.4.3 Y lechoed 255lechoed nonzero |echoed
NetBSD 1.5,1.5.1,1.5.2,1.5.3 Y lechoed 255lechoed nonzero |echoed
NetBSD 1.6, 1.6.1 Y N 255echoed |nonzero |echoed
Netware 4.11, 4.11 sp9 Y N 128echoed nonzero |echoed
Netware 5, 5 sp6a Y N 128echoed nonzero |echoed
Netware 5.1 Y N 1280 nonzero |echoed
Netware 5.1 sp6 , 6, 6 sp3 Y N 128echoed nonzero |lechoed
OpenBSD 2.0,2.1,2.2,2.3,2.4,25,26,27,2.8,2.9 Y lechoed 255lechoed nonzero |echoed
OpenBSD 3.0, 3.1, 3.2, 3.3 Y lechoed 255echoed nonzero |echoed
QNX RTP 4 N N/A -1-1 N/A N/A

' BeOS, Netware 5.1, and recent Windows systems do not echo the IP TOS from the

stimulus.

2 MacOS 9.0 echoes the IP DF bit setting while other Mac OS 9 set this bit to 1

independently from the stimulus.

" NetBSD 1.6 and 1.6.1 set the IP DF hit to 0 while other NetBSD echo the setting of

the stimulus.

134

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest ICMP_Echo

oS Resp DF TTL TOS IPID ICMPCode
QNX RTP 6.0 N N/A -1-1 N/A N/A
QNX RTP 6.1, 6.2 Y lechoed 255echoed nonzero |echoed
QNX RTP 6.2.1 Y N 255echoed nonzero |echoed
SunOS 5.5,5.5.1,5.6,5.7,5.8,5.9 Y Y 255lechoed nonzero |echoed
SunOS (Intel) 5.8 Y Y 255lechoed nonzero |echoed
\Windows 95 Y lechoed 32echoed nonzero |0
\Windows NT 3.51 standard Y lechoed 32echoed nonzero [0
\Windows 98, 98 SE Y lechoed 128echoed nonzero |0
\Windows NT 4 standard, sp3, sp4, sp6 Y lechoed 128echoed nonzero |0
\Windows Millennium standard Y lechoed 128echoed nonzero |0
\Windows 2000 standard, sp2, sp3, sp4 Y lechoed 1280" nonzero |0
\Windows XP Home, Professional Y lechoed 1280 nonzero [0
\Windows Net standard Y lechoed 1280 nonzero [0
\Windows 2003 Server standard Y lechoed 1280 nonzero |0
Table 24. PassiveTest_ICMP_Info
PassiveTest ICMP_Info

oS Resp| DF | TTL | TOS | IPID
BEOS 5 N N/A -1 -1N/A
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1,2.2.0,2.2.1,2.2.2,2.2.5,2.2.6, 2.2.7, 2.2.8 N N/A -1 -1N/A
FreeBSD 3.0, 3.1, 3.2, 3.3,3.4,35.1 N N/A -1 -1N/A
FreeBSD 4.0,4.1,4.1.1,4.2,4.3,4.4,45,4.6,4.6.2,4.7,4.8,5.0,5.1 N N/A -1 -1N/A
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N N/A -1 -1N/A
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5,2.2.5-15,2.2.6,2.2.7,2.2.8,2.2.9 N N/A -1 -1N/A
Linux 2.2.10,2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17,2.2.18,2.2.19 N N/A -1 -1N/A
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N N/A -1 -1N/A
Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.4.4,2.4.4-4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 N N/A -1 -1N/A
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-
3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk N N/A -1 -1N/A
MacOS 7.5.3,7.5.,5,7.6,7.6.1 N N/A -1 -1N/A
MacOS 8.0, 8.1 N N/A -1 -1N/A
MacOS 9.0, 9.1,9.2.1,9.2.2 N N/A -1 -1N/A
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5,
10.2.6 N N/A -1 -1N/A
NetBSD 1.1 N N/A -1 -1N/A
NetBSD 1.2,1.2.1 N N/A -1 -1N/A
NetBSD 1.3,1.3.1,1.3.2,1.3.3 N N/A -1 -1N/A
NetBSD 1.4,1.4.1,1.4.2,1.4.3 N N/A -1 -1N/A
NetBSD 1.5,1.5.1,1.5.2,1.5.3 N N/A -1] -1N/A
NetBSD 1.6, 1.6.1 N N/A -1 -1N/A
Netware 4.11, 4.11 sp9 N N/A -1 -1N/A
Netware 5, 5 sp6a, N N/A -1 -1N/A

" BeOS, Netware 5.1, and recent Windows systems do not echo the IP TOS from the

stimulus.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

135

PassiveTest ICMP_Info
oS Resp| DF | TTL | TOS | IPID
Netware 5.1, 5.1 sp6 N N/A -1 -1N/A
Netware 6 , 6 sp3 N N/A -1 -1N/A
OpenBSD 2.0,2.1,2.2,2.3,24,25,26,2.7,2.8,2.9 N N/A -1 -1N/A
OpenBSD 3.0, 3.1, 3.2,3.3 N N/A -1 -1N/A
QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 N N/A -1 -1N/A
SunOS 5.5,5.5.1,5.6,5.7, 5.8, 5.9 N N/A -1 -1N/A
SunOS (Intel) 5.8 N N/A -1 -1N/A
\Windows 95 N N/A -1 -1N/A
\Windows NT 3.51 standard N N/A -1 -1N/A
\Windows 98, 98 SE N N/A -1 -1N/A
\Windows NT 4 standard, sp3, sp4, sp6 N N/A -1 -1N/A
\Windows Millennium standard N N/A -1 -1N/A
\Windows 2000 standard, sp2, sp3, sp4 N N/A -1 -1N/A
\Windows XP Home, Professional N N/A -1 -1N/A
\Windows Net standard N N/A -1 -1N/A
\Windows 2003 Server standard N N/A -1 -1N/A
Table 25. PassiveTest_ICMP_TS
PassiveTest ICMP TS
oS Resp DF TTL TOS IPID
BEOS 5 N N/A -1 N/AIN/A
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1,2.2.0, 2.2.1, 2.2.2, 2.2.5,2.2.6, 2.2.7,
2.2.8 Y echoed 255/ echoednonzero
FreeBSD 3.0, 3.1,3.2,3.3,3.4,35.1 Y echoed 255/ echoednonzero
FreeBSD 4.0,4.1,4.1.1,4.2,4.3 Y echoed 255/ echoednonzero
FreeBSD 4.4,4.5,4.6,4.6.2,4.7,4.8 Y echoed 64 echoednonzero
FreeBSD 5.0, 5.1 Y echoed 64 echoednonzero
Linux 2.0.30, 2.32, 2.0.36 (all Red Hat) N N/A -1 N/AIN/A
Linux 2.0.29, 2.0.34, 2.0.36 (all Debian) Y N 64 echoednonzero
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5,2.2.5-15,2.2.6,2.2.7,2.2.8, 2.2.9 Y N 255 echoednonzero
Linux 2.2.10,2.2.11, 2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16,
2.2.16-22,2.2.17,2.2.18, 2.2.19 Y N 255/ echoednonzero
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22,2.2.23, 2.2.24 Y N 255/ echoednonzero
Linux 2.4.0,2.4.1,24.2,2.4.2-2,2.4.3,2.4.4, 2.4.4-4GB Y Y 255/ echoed0
Linux 2.4.5,2.4.6,2.4.7,2.4.8,2.4.9 Y N 255/ echoednonzero
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17,
2.4.18, 2.4.18-3, 2.4.18-4GB Y N 255/ echoednonzero
Linux 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk Y N 64 echoednonzero
MacOS 7.5.3,7.5.5,7.6,7.6.1 N N/A -1 N/AIN/A
MacOS 8.0, 8.1 N N/A -1 N/AIN/A
MacOS 9.0 N N/A -1 N/AIN/A
MacOS 9.1, 9.2.1,9.2.2 N N/A -1 N/AIN/A
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5 Y echoed 255/ echoednonzero
MacOS 10.2.1, 10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 Y echoed 64 echoednonzero
NetBSD 1.1 Y echoed 255/ echoednonzero
NetBSD 1.2,1.2.1 Y echoed 255/ echoednonzero
NetBSD 1.3,1.3.1,1.3.2,1.3.3 Y echoed 255/ echoednonzero
NetBSD 1.4,14.1,1.4.2,1.4.3 Y echoed 255/ echoednonzero

136 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest ICMP_TS

oS Resp DF TTL TOS IPID
NetBSD 1.5,1.5.1,1.5.2,1.5.3 Y echoed 255/ echoednonzero
NetBSD 1.6, 1.6.1 \4 N " 255 echoednonzero
Netware 4.11, 4.11 sp9 N N/A -1 N/AN/A
Netware 5, 5 sp6a N N/A -1 N/AN/A
Netware 5.1, 5.1 sp6 N N/A -1 N/AN/A
Netware 6, 6 sp3 N N/A -1 N/AN/A
OpenBSD 2.0,2.1,2.2,2.3,24,25,26,2.7,2.8,2.9 Y echoed 255/ echoednonzero
OpenBSD 3.0, 3.1, 3.2,3.3 Y echoed 255/ echoednonzero
QNX RTP 4 N N/A -1 N/AN/A
QNX RTP 6.0 N N/A -1 N/AN/A
QNX RTP 6.1, 6.2 Y echoed 255 echoednonzero
QNX RTP 6.2.1 Y N 255 echoednonzero
SunOS 5.5,5.5.1,5.6,5.7,5.8, 5.9 Y Y 255/ echoednonzero
SunOS (Intel) 5.8 Y Y 255 echoednonzero
\Windows 95 N N/A -1 N/AN/A
\Windows NT 3.51 standard N N/A -1 N/AIN/A
Windows 98, 98 SE Y N 128 0 "nonzero
\Windows NT 4 standard, sp3, sp4, sp6 N N/A -1 N/AN/A
\Windows Millennium standard Y N 128 Ononzero
\Windows 2000 standard, sp2, sp3, sp4 Y N 128| Ononzero
\Windows XP Home, Professional Y N 128 Ononzero
\Windows Net standard Y N 128 Ononzero
\Windows 2003 Server standard Y N 128] Onhonzero
Table 26. PassiveTest_ICMP_Mask
PassiveTest_ICMP_Mask

oS Resp DF TTL TOS IPID
BEOS 5 N N/A N/A N/A N/A
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1, 2.2.0, 2.2.1, 2.2.2,
2.2.5,2.2.6,2.2.7,2.28 N N/A N/A N/A N/A
FreeBSD 3.0,3.1,3.2,3.3,34,35.1 N N/A N/A N/A N/A
FreeBSD 4.0,4.1,4.1.1,4.2,4.3,4.4,45,4.6,4.6.2, 4.7, 4.8,
5.0,5.1 N N/A N/A N/A N/A
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N N/A N/A N/A N/A
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5, 2.2.5-15, 2.2.6,
2.2.7,2.2.8,2.2.9 N N/A N/A N/A N/A
Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5,
2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 N N/A N/A N/A N/A
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22,2.2.23, 2.2.24 N N/A N/A N/A N/A
Linux 2.4.0,2.4.1,2.4.2,2.42-2,2.4.3, 2.4.4, 2.4.4-4GB, 2.4.5,
2.4.6,2.4.7,2.4.8,2.4.9 N N/A N/A N/A N/A

" NetBSD 1.6 and 1.6.1 set the DF bit to 0 while other NetBSD echo the setting of the

stimulus.

"® Windows systems do not echo the IP TOS from the stimulus.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

137

PassiveTest_ICMP_Mask

(O] Resp DF TTL TOS IPID
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19,
2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk N N/A N/A N/A N/A
MacOS 7.5.3,7.5.5,7.6,7.6.1 Y Y 255 echoed nonzero
MacOS 8.0, 8.1 Y Y 255 echoed nonzero
MacOS 9.0 Y echoed ”” [255 echoed nonzero
MacOS 9.1, 9.2.1, 9.2.2 Y Y 255 echoed nonzero
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,
10.2.2,10.2.3, 10.2.4, 10.2.5, 10.2.6 N N/A N/A N/A N/A
NetBSD 1.1 N N/A N/A N/A N/A
NetBSD 1.2,1.2.1 N N/A N/A N/A N/A
NetBSD 1.3,1.3.1,1.3.2,1.3.3 N N/A N/A N/A N/A
NetBSD 1.4,1.4.1,14.2,1.43 N N/A N/A N/A N/A
NetBSD 1.5,1.5.1,15.2,1.5.3 N N/A N/A N/A N/A
NetBSD 1.6, 1.6.1 N N/A N/A N/A N/A
Netware 4.11, 4.11 sp9 N N/A N/A N/A N/A
Netware 5, 5 sp6a Y N echoed echoed nonzero
Netware 5.1 " Y N lechoed 0 nonzero
Netware 5.1 sp6 N N/A N/A N/A N/A
Netware 6 Y N echoed echoed nonzero
Netware 6 sp3 N N/A N/A N/A N/A
OpenBSD 2.0,2.1,2.2,2.3,2.4,25,2.6,2.7,2.8,2.9 N N/A N/A N/A N/A
OpenBSD 3.0, 3.1, 3.2,3.3 N N/A N/A N/A N/A
QNX RTP 4 N N/A N/A N/A N/A
OQNXRTP 6.0, 6.1, 6.2,6.2.1 N N/A N/A N/A N/A
SunOS 5.5,5.5.1,5.6,5.7,5.8,5.9 Y Y 255 echoed nonzero
SunOS (Intel) 5.8 Y Y 255 echoed nonzero
Windows 95 Y N 32 0" nonzero
\Windows NT 3.51 standard Y N 32 0 nonzero
\Windows 98, 98 SE Y N 128 0 nonzero
\Windows NT 4 standard, sp3 Y N 128 0 nonzero
\Windows NT 4 sp4, sp6 N N/A N/A N/A N/A
\Windows Millennium standard N N/A N/A N/A N/A
\Windows 2000 standard, sp2, sp3, sp4 N N/A N/A N/A N/A
\Windows XP Home, Professional N N/A N/A N/A N/A
\Windows Net standard N N/A N/A N/A N/A
\Windows 2003 Server standard N N/A N/A N/A N/A

Table 27. PassiveTest_ICMP_ID_SEQ
PassiveTest ICMP_ID SEQ
0s IcMPIDClass| IDInvariant IcMPSeqClass| Seqinvariant

" MacOS 9.0 echoes the DF bit while other Mac OS 9 do not.

"8 Service packs of Novell Netware 5.1 and 6 prevent the sytem from giving away mask
information.

® Windows systems do not echo the IP TOS from the stimulus.

138 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest ICMP_ID_SEQ

[ON) ICMPIDClass| IDInvariant ICMPSeqClass| Seqglnvariant
BEOS 5 | 1 | 100
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1,2.2.0, 2.2.1,2.2.2, 2.2.5, 2.2.6,
2.2.7,2.2.8 [TDI (or I) 100 I 100
FreeBSD 3.0, 3.1,3.2,3.3,3.4,35.1 [TDI (or I) 100 I 100
FreeBSD 4.0,4.1,4.1.1,4.2,43,4.4,4.5,4.6,4.6.2,4.7, 4.8, [TDI (or 1) 100 | 100
FreeBSD 5.0, 5.1 TDI (or I) 100 I L,
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 [TDI (or I) 100 I 100
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.2.4,2.2.5,2.25-15,2.2.6,2.2.7,2.2.8,
2.2.9 [TDI (or) 100 | 100
Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15,
2.2.16,2.2.16-22, 2.2.17, 2.2.18, 2.2.19 [TDI (or 1) 100 | 100
Linux 2.2.16 (S.u.S.E 7.0), Linux 2.2.18 (S.u.S.E 7.1) TDI (or 1) 100 | L ®
Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22,2.2.23, 2.2.24 [TDI (or 1) 100 | 100
Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.4.4,2.45,2.4.6,2.4.7,2.4.8,2.4.9 [TDI (or) 100 | 100
Linux 2.4.4-4GB (S.u.S.E 7.2) [TDI (or I) 100 I L #
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16,
2.4.17,2.4.18, 2.4.18-3, 2.4.18-4GB,2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20 [TDI (or I) 100 | 100
Linux 2.4.20-8 (RedHat 9) * TDI (or I) 100 I
Linux 2.4.21-0.13mdk (Mandrake PPC 9.1) [TDI (or I) 1 |
MacOS 7.5.3,7.5.5,7.6,7.6.1,8.0,8.1, 9.0,9.1,9.2.2 (using TCPMac Ping) |l 1 C
MacOS 10.0.0, 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2,
10.2.3,10.2.4, 10.2.5, 10.2.6 [TDI (or 1) 1 | 1
NetBSD 1.1,1.2,1.2.1% TDI (or I) 100 I 100
NetBSD 1.3,1.3.1,1.3.2,1.3.3 [TDI (or I 100 | 1
NetBSD 1.4,14.1,1.42,14.3,15,151,15.2,153,1.6,1.6.1 [TDI (or 1) 1 | 1
Netware 4.11, 4.11 sp9 | 6000 | 100
OpenBSD 2.0, 2.1 [TDI (or 1) 100 | 100
OpenBSD 2.2,2.3,24,25,26,2.7,28,2.9,3.0,3.1,32,3.3 RD -1 | 1
QONXRTP 4, 6.0, 6.1, 6.2 [TDI (or 1) 10 | 1
ONX RTP 6.2.1 | 2000 | 1
SunOS 5.5,5.5.1,5.6,5.7,5.8, 5.9 [TDI (or I 1 I 1
SunOS (Intel) 5.8 [TDI (or 1) 1 | 1
\Windows 95 C 100 IGlobal 100
\Windows NT 3.51 standard C 100 IGlobal 100
\Windows 98, 98 SE C 200 IGlobal 100
\Windows NT 4 standard, sp3, sp4, sp6 C 100 IGlobal 100
\Windows Millennium standard C 300 IGlobal 100
\Windows 2000 standard, sp2, sp3, sp4 C 200 IGlobal 100
\Windows XP Home, Professional C 200 IGlobal 100
\Windows Net standard C 200 IGlobal 100
\Windows 2003 Server standard C 200 IGlobal 100

% FreeBSD 5.0 and 5.1 increments the ICMP Sequence number by 0x0001 while ol der
FreeBSD increment it by 0x0100.

8 | inux 2.2.16 and 2.2.18 distributed by S.u.S.E have a signature different than other
2.2.16 and 2.2.18 kernels.

% Linux 2.4.4-4GB (S.u.S.E.) has a different signature than other 2.4.4 kernels.

% The RedHat 9 and Mandrake PPC 9.1 distributions have their own distinct signatures.
There are three different signatures to distinguish between the NetBSD versions.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 139

orT

Table 28. PassiveTest_ICMP_ID (Subtest of PassiveTest_ICMP_ID_SEQ)

PassveTest ICMP_ID (Subtest of PassiveTest ICMP_ID_SEQ)

ResultOSKey ICMPID| DF |TOS|Datalen ConstantData
BEOS 5 other IN [0 |30 0000000000000000000008090A0BOCODOEOF10111213
FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6,
2.1.7.1,2.2.0,2.2.1,2.2.2,2.2.5,2.2.6,
227,228 other [N |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
FreeBSD 3.0, 3.1,3.2,3.3,3.4,35.1 other IN |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
FreeBSD 4.0,4.1,4.1.1,4.2,4.3,4.4,
4.5,4.6,4.6.2,4.7,4.8 other IN |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
FreeBSD 5.0, 5.1 other IN |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34,
2.0.36 other IN |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
Linux 2.2.0,2.2.1,2.2.2,2.2.3,2.24,
2.2.5,2.25-15,2.2.6,2.2.7,2.2.8,2.2.9 jother [N [0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20,
2.2.13,2.2.14, 2.2.14-5, 2.2.15, 2.2.16,
2.2.16-22, 2.2.17,2.2.18, 2.2.19,2.2.20,
2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23,
2.2.24 other IN |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
Linux 2.4.0,2.4.1,2.4.2,24.2-2,2.4.3,
2.4.4,2.4.4-4GB, 2.45,2.4.6,2.4.7,
2.4.8,2.4.9 other [Y 0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
Linux 2.4.10, 2.4.10-4GB, 2.4.11,
2.4.12,2.4.13,2.4.14, 2.4.15, 2.4.16,
2.4.17,2.4.18, 2.4.18-3, 2.4.18-
4GB,2.4.18-14, 2.4.19, 2.4.19-4GB,
2.4.20, 2.4.20-8, 2.4.21-0.13mdk other [Y |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
MacOS 7.5.3,7.5.3,7.5.5,7.6, 7.6.1, 8.0,
8.1 (using TCPMac Ping) other [Y [0 |56 00
MacOS 9 9.0 (using TCPMac Ping) other N* 0 |56 00

MacOS 9.0 appears to have a different signature than MacOS 9.1 and 9.2. This requires further investigation.

PassiveTest ICMP_ID (Subtest of PassiveTest ICMP_ID_SEQ)

ResultOSKey ICMPID| DF |TOS|DatalLen ConstantData
MacOS 9 9.1, 9.2.1, 9.2.2 (using TCPMac
Ping) other Y |0 |56 00
MacOS 10.0.0, 10.1.0, 10.1.1, 10.1.2,
10.1.3,10.1.4,10.1.5, 10.2.1, 10.2.2,
10.2.3,10.2.4, 10.2.5,10.2.6 other I[N |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
NetBSD 1.1,1.2,1.2.1,1.3,1.3.1,1.3.2,
1.3.3 other [N |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
NetBSD 1.4,1.4.1,1.4.2,1.4.3,1.5,
1.5.1,15.2,153,16,16.1 other [N |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
Netware 4.11, 4.11 sp9 other IN [0 [12 0000
Netware 5, 5 sp6a, 5.1, 5.1 sp6 other IN [0 12 0000
Netware 6, 6 sp3 other IN |0 12 0000
OpenBSD 2.0,2.1,2.2,2.3 other IN |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
OpenBSD 2.4 other N |0 |56 101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30313233343536370000000000000000%
OpenBSD 2.5, 2.6,2.7,2.8, 2.9, 3.0, 3.1,
3.2,3.3 other IN |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 other IN |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
SunOS 5.5, 5.5.1,5.6,5.7, 5.8, 5.9 other [Y |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
SunOS (Intel) 5.8 other [Y |0 |56 08090A0BOCODOEOF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
\Windows 95 100 N [0 32 6162636465666768696A6B6CE6DEEBF7071727374757677616263646566676869
Windows NT 3.51 standard 100 N [0 32 6162636465666768696A6B6CE6DEEBF7071727374757677616263646566676869
\Windows 98, 98 SE 200 N [0 B2 6162636465666768696A6B6C6DEEBF7071727374757677616263646566676869
\Windows NT 4 standard, sp3, sp4, sp6 {100 N [0 B2 6162636465666768696A6B6C6DEEBF7071727374757677616263646566676869
\Windows Millennium standard 300 N 0 32 6162636465666768696A6B6C6DEEBF7071727374757677616263646566676869
\Windows 2000 standard, sp2, sp3, sp4 [200 N [0 B2 6162636465666768696A6B6C6DEEBF7071727374757677616263646566676869
\Windows XP Home, Professional 200 N [0 B2 6162636465666768696A6B6C6DEEBF7071727374757677616263646566676869
Windows Net standard 200 N [0 B2 6162636465666768696A6B6C6DEEBF7071727374757677616263646566676869
Windows 2003 Server standard 200 N [0 B2 6162636465666768696A6B6C6DEEBF7071727374757677616263646566676869

The data transmitted by the ping utility version installed by default on OpenBSD 2.4 begins at a 8-byte offset from the usual data string. The
E ping version is 1.35. The error wasfixed in later releases.

Table 29. PassiveTest_ICMP_SEQ (Subtest of PassiveTest_ICMP_ID_SEQ)

PassiveTest ICMP_SEQ (Subtest of PassiveTest ICMP_ID_SEQ)

ResultOSKey ICMPSeqClass| Seglnvariant
BEOS 5 | 100
FreeBSD 2.0.5,2.1.0,2.1.5,2.1.6,2.1.7.1,2.2.0,2.2.1,2.2.2,2.25,2.2.6,2.2.7,2.2.8 | 100
FreeBSD 3.0, 3.1,3.2,3.3,3.4,35.1 | 100
FreeBSD 4.0,4.1,4.1.1,4.2,43,4.4,4.5,4.6,4.6.2,4.7,4.8 | 100
FreeBSD 5.0, 5.1 | 1
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 | 100
Linux 2.2.0,2.2.1,22.2,223,2.24,2.2.5,2.2.5-15,2.2.6,2.2.7,2.2.8,2.2.9 | 100
Linux 2.2.10,2.2.11, 2.2.12,2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17,2.2.18, 2.2.19,2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22,2.2.23, 2.2.24 I 100
Linux 2.2.16 (S.u.S.E 7.0), Linux 2.2.18 (S.u.S.E 7.1) | 1
Linux 2.4.0,2.4.1,2.4.2,2.4.2-2,2.4.3,2.4.4,2.45,2.4.6,2.4.7,2.4.8,2.4.9 | 100
Linux 2.4.4-4GB | 1
Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-
3, 2.4.18-4GB,2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20 | 100
Linux 2.4.20-8 | 1
Linux 2.4.21-0.13mdk | 1
MacOS 10.0.0, 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4,
10.2.5,10.2.6 | 1
MacOS 7.5.3,7.5.3,7.5.5,7.6,7.6.1, 8.0,8.1, 9.0,9.1,9.2.2 (using TCPMac Ping) C 0
NetBSD 1.1,1.2,1.2.1 | 100
NetBSD 1.3,1.3.1,1.3.2,1.3.3 | 1
NetBSD 1.4,1.4.1,1.4.2,14.3,15,15.1,15.2,15.3,1.6,16.1 | 1
Netware 4.11, 4.11 sp9 | 100
Netware 5, 5 sp6a, 5.1, 5.1 sp6 | 100
Netware 6, 6 sp3 | 100
OpenBSD 2.0, 2.1 | 100
OpenBSD 2.2,2.3,24,25,26,27,28,2.9,3.0,3.1,32,33 | 1
QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 | 1
SunOS 5.5,5.5.1,5.6,5.7,5.8, 5.9 | 1
SunOS (Intel) 5.8 | 1
\Windows 95 | 100
\Windows NT 3.51 standard | 100
\Windows 98, 98 SE | 100
\Windows NT 4 standard, sp3, sp4, sp6 | 100
\Windows Millennium standard | 100
\Windows 2000 standard, sp2, sp3, sp4 | 100
\Windows XP Home, Professional | 100
\Windows Net standard I 100
\Windows 2003 Server standard | 100

142 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Annex B: Active OS identification tools: Analysis
of Nmap and Xprobe

This Annex describes two active OS identification tools : Nmap, and Xprobe. The
descriptions are based on analysis of the programs’ code and on analysis of traffic they
generate. Nmap and X probe combine a great deal of the OS fingerprinting techniques
currently known. For other interesting methods not covered by Nmap, and X probe,
the reader can refer to [2], [3] and [11].

The Annex is broken into two sections, one for each tool. In each section, we describe
in detail the packets aimed at the target and the checks conducted on the response
packets. We end each section with some general remarks on OS differences that were
observed during the analysis of the tool.

OS scan with Nmap

Nmap is a network mapper utility designed to scan large networks. It is capable of
determining what hosts are available on the network, what services they are offering,
what operating system they are running, what type of packet filters/firewalls arein use,
and several of other characteristics. We focus here on its OS detection capability.
Nmap’ s fingerprinting technique tests the TCP/IP stack implementation of the target
by sending craft packets and observing the responses. The techniqueis broken down
into ninetests. Asof November 2004, the version available for download from

nmap’ s websiteis 3.75. The version examined during this study was 2.54Beta?9.
While the new version is still based on the nine tests described below, some
discrepancies should be expected.

Nmap stores al of its known Operating System (OS) fingerprintsin atext file named
“nmap-os-fingerprint”. A typical entry in thisfileis provided below.

Fingerprint Linux 2.1.19 - 2.2.17

T Seq(Class=RI%gcd=<8%SI=>10000%I P|D=I%TS=100HZ)

T1(DF=Y [N%W=3CO0A|3F25|7B2F|7F53|7C38|B63%ACK =S++%Fl ags=A S%Ops=M ENNTNW)

T2(Resp=N)

T3(Resp=Y [N%DF=Y %W=3CO0A|3F25|7B2F|7F53|7C38|B63%A CK=S++%Flags=AS%Ops=MENNTNW)
T4(DF=N%W=0%A CK=0%Flags=R%Ops=)

T5(DF=N%W=0%ACK =S++%F ags=AR%Ops=)

T6(DF=N%W=0%ACK=0%Flags=R%O0ps=)

T7(DF=N%W=0%ACK =S%Flags=AR%Ops=)

PU(DF=N%TOS=CO0|A0|0%I PLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E|F%0ULEN=134%DAT=E)

This particular entry associates the results of the ninetests (Tseq, T1, T2, T3, T4, T5,
T6, T7, PU) to the fingerprint of a machine running Linux with kerndl versions 2.1.19
t0 2.2.17. Thesetests are described in more detail in the sections below.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 143

144

To proceed with the OS scan, Nmap targets two ports on the victim’'s machine: onein
the state OPEN and one in the state CLOSED. To find these two ports, Nmap starts
with a port scan on the target. The tool however, has an option that allows the user to
limit the number of portsto be scanned. If Nmap finds no closed ports among the
user-specified ones, it will pick a presumed closed port (greater than 30000).

Description of tests T1-T7
Each test T1 to T4 consists in sending one TCP packet to an open port. They
differ by their TCP flags and, in the T1 case, by the use of areserved bit.
Thisbit is the one preceding the URG flag bit and its use is not standard since
itis part of areserved field as specified by RFC 793 (the protocol standard for
TCP). RFC 3168 (proposed standard) proposes that the last two bits of the
reserved field be used for control of congestion. These two special bits are

referred to as CWR and ECN respectively. Thetests T5 through T7 send one
TCP packet each to a closed port and differ only by their TCP flags.

All of these seven crafted packets are sent with the following TCP options:
1. WINDOW SCALE of 10B,

2. NOP,

3. MSSof 265B,

4. TIMESTAMP,

5. EOL.

These options appear in this very specific order. The IP datagrams have total
length of 60B (20B of IP header + 40B of TCP header with options + 0B
of data). Thefollowing list summarises the crafted packets with their TCP
flags settings.

T1: [SYN, ECN] packet with TCP options sent to an open port.

T2: NULL packet (none of the flags set) with TCP options sent to an open
port.

T3: [SYN, FIN, URG, PSH] packet with urgent pointer set to 0. The packet is
sent with TCP options to an open port.

T4: [ACK] packet with TCP options sent to an open port.
T5: [SYN] packet with TCP options sent to a closed port.

T6: [ACK] packet with TCP options sent to a closed port.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

T7: [FIN, URG, PSH] packet with urgent pointer setto 0. The packet is sent
with TCP options to a closed port.

Nmap captures and analyses the response of the target for each of these
packets. More specifically, it will categorize the response based on six check
criterions:

1. Didwereceive aresponseto this packet? (“Y” or “N”)

2. Isthe Don't Fragment bit set in the target’ s response? (“Y” or “N”)

3. What isthe TCP Window size value in the target’ s response? (two-byte
integer expressed in hexadecimal)

4. What isthe TCP Acknowledgement number in the target’ s response (in
relation to the sequence number of nmap’ s triggering packet)? (“S’, or
13 S++H , Or 13 OH) 87

5. What TCPflags are included in the target’ s response? (a subset of “B, U,
A,P,R,S F)®%®

6. What TCP options are included in the target’ s response packet? ® (“L”,
13 N” , 13 M” , 13 E” , “W” , “T”) 90

The fingerprint format makes use of “%” symbols to separate the responses to
the above criterions. When multiple responses are possible, they are
separated by a“|” symbol.

For example, consider the line beginning with T3 from the Linux example,

T3(Resp=Y [N%DF=Y %W=3CO0A [3F25|7B 2F|7F53|7C38|B63%A CK =S++%
Flags=A S%0ps=M ENNTNW)

It says that the response packet to Nmap’s T3 test would have the following
characteristics:

87 13

S’ if the Acknowledgment number of the response is equal to the Sequence number
of the triggering packet, “ S++” if it isincremented by one, or “O” for any other value.
8 «B” stands for the BOGUS bit because it is supposed to be unused. This bit is the
one preceding the URG bit, that is the ECN as discussed earlier.
8 Options sent back (and thus supported) by the targeted. They can appear in a different
order depending of the target’s operating system.
% «| " if End of option list (code 0) is set,

“N” if No-operation option (code 1) is set,

“M” if MSS option (code 2) is set, followed by “E” if the value is echoed from the
nmap packet’sMSS,

“W” if Window scale option (code 3) is set,

“T” if Timestamp option (code 8) is set.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 145

146

e Resp=Y|N The target may or may not respond.

e DFzY The response packet is expected to have the Don’t
fragment bit set.
e W=3COA|3F25|7B2 The Window size value expected is one of the
F|7F53|7C38|B63 following: 3COA, or 3F25, or 7B2F, or 7F53, or 7C38,
or B63.
o ACK=S++ The response’ s Acknowledgement number is

expected to be equal to triggering packet’s Initial
sequence number plus 1.

e Flags=AS The TCP flags expected are SYN and ACK.

e Ops=MENNTNW The response packet should have the following
options set in this order:
<M SS(Echoed)><NOP><NOP><Timestamp>
<NOP><Window scale>

Note that the first check,“Resp=", isabsent from T1, T4, T5, T6, and T7
fingerprints. This means that lack of aresponse will not disqualify a match as
long as al the other tests of the fingerprint structure match. Nmap usesthis
strategy because generally, Operating Systems do respond to these packets.
Therefore, alack of response to these packetsis more likely attributed to the
network conditions and not the OSiitself. For instance, they could be dropped
by afirewall. The criteria“Resp=" appearsin T2 and T3 because some
operating system do drop those without responding.

Description of the PU test

PU stands for “port unreachable’. Thistest probesan ICMP port
unreachable message by sending one UDP packet to a closed UDP port. The
IP datagram total length of the triggering packet is 328B (20B of IP header +
8B of UDP header + 300B of datd). The data consist of a certain repeated
byte. The“pattern-byte” is picked randomly each time Nmap sends out this
test.

Recall: The content of an IP datagram encapsulating an ICMP port
unreachable error message is as follows:

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

I P header

ICMP header

Data, consisting of thefirstsfew bytes of the packet that triggered the ICMP error message,
thusin this particular case:
IP header of the crafted packet
+

First “few”*" bytes of the UDP header and data of the crafted packet

Nmap categorises the response based on nine criteria described below. The
six last are concerned by the ICMP data content, which is the echoed IP
datagram that caused the ICMP packet to be sent. Nmaps looks at how much
of itsoriginal packet is echoed, and also verifiesif some particular fields were
modified.

1. Didwereceive aresponse (an ICMP port unreachable message) to this
packet? (“Y” or “N”)

2. Isthe Don’'t Fragment bit set in the target’ s response? (“Y” or “N”)

3. What Type of service (TOS) is set in the response packet? (hexadecimal
value)

4. What isthe value of the IP total length field of the response packet?
(hexadecimal value)

5. What isthe IP total length field of the offending packet being echoed?
(hexadecimal value)

6. HasthelP Identification field of the offending packet been echoed
correctly? (“0", “E”, “F")*®

7. Doesthe IP checksum of the offending packet being echoed computes?
(H o” , 13 E” , 13 Fl1)93

8. Doesthe UDP checksum of the offending packet being echoed
Comput%? (H Oll , 113 EH ,] F'H)

9. What isthe value of the UDP Message length field of the offending
packet being echoed? (hexadecimal value)

L At least the first 8 bytes following the IP header. More than 8 bytes may be sent
according to RFC 1122 (Requirements for Internet Host — Communication Layers),
section 3.2.2. RFC 1122 isan officia standard.

% «0" if the returned value is zero, “E” (for “as Expected”) if the returned value is
correctly echoed, and “F’ otherwise.

% «0" if the returned value is zero, “E” (for “as Expected”) if the checksum computes,
and “F” otherwise.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 147

148

10. Have the Data of the offending packet been echoed correctly? (“E”, “F")

For example, consider the line beginning with PU from the Linux example,

PU(DF=N%TOS=CO0|A0]0%I PLEN=164%RIPTL=148%RID=E%RIPCK=E
%UCK=E|F%0ULEN=134%DAT=E)

It says that the response packet to Nmap’s PU test would have the following

characteristics:

e Respisabsent

DF=N
e TOS=CO

e |PLEN=164

e RIPTL=148

e RID=E
e RIPCK=E
e UCK=EF

e ULEN=134

e DAT=E

Description of test Tseq

Thetarget normally responds to this packet. If no
response is received for PU test, do not discard the
fingerprint because of it.
The Don't fragment is expected to be 0 (not set).
The Type of Service expected should be set to one
of these values: CO, AQ, or 0.
The IP total length expected hexadecimal valueis
0x0164 (i.e. 356 bytes)
The data corresponding to the IP total length field of the
returned datagram is expected to be 0x0148 (i.e. 328
bytes)
The data corresponding to the IP ID field of the returned
datagram is expected to be correctly echoed.
The data corresponding to the IP Checksum field of the
returned datagram is expected to compute correctly.
The data corresponding to the UDP Checksum field of the
returned datagram may be correct or incorrect.
The data corresponding to the UDP Message length field
of the returned datagram is expected to have the value
0x0134 (i.e. 308 bytes)
The data corresponding to the returned datagram’ s data
field is expected to be echoed correctly.

Thistest investigates the predictability of the TCP Initial Sequence Numbers
(ISN) as well asthe IP Identification (ID) numbers generation. It alsotriesto
characterize the TCP timestamp clock update rate of the target’s operating

system.

ISN numbers are generated during the first and second handshake of a TCP
connection. The initiator of the connection sends hisISN in the SYN packet,
and the responding host sends hisin the SYN/ACK packet. New IP
identification numbers are generated for every IP packets. Asfor the TCP
timestamp clock values, they appear when the TCP timestamp option is set.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

The Tseq test differs from the other Nmap tests in the sense that it cannot be
based solely on one packet, it requires constructing a sample of packets sent
by the target. Nmap uses a six-packet sample composed of SYN/ACK
packets received from the target. To get these packets, Nmap initiates six
consecutive connections™ in a very short amount of time. If at least 4
responses are received and that the delay between the probes™ is no longer
than one second, nmap considers the sample as being suitable for its
calculations.

The crafted packets that Nmap sends out for this test have the TCP SY N flag
set and have atotal length of 60B (20B of IP header + 40B of TCP header
with options + OB of data). The options are identical to the ones of the tests
T1through T7.

For each response packet, Nmap collects the values of the following fields:

« Thelnitia sequence number of the TCP header

o Theldentification field of the IP header

« Thetimestamp value (tsval) of the TCP Timestamp option (if supported).
It then looks at how these values differ from one packet to another. The
following paragraphs summarise the different categories nmap defines to
characterize the target behaviour:

The 1SN classes defined by Nmap are:

« Constant ISNs (Class C)

« ISNsthat are multiple of 64000 (Class 64K)

« |ISNsthat are multiple of 800 (Classi800)

« ISNsincremented using random positive increments (Class RI)

« ISNsproduced by atrue random generator (Class TR)

« Timedependent ISNs (Class TD)

% The connections are never fully opened however since Nmap tears them down by sending
RST packetsimmediately after receiving SYN/ACK packets. That is, only the first two
handshakes of the TCP three-way handshakes are completed. Thisisalso known as “half-
open scanning”.
% nmap has an option that alows the user to set the delay between the transmission of
each stimulus. The longer the delay, the stealthier the tool is. However, in cases where
the location of the system running nmap prevents it from seeing all of itstarget's traffic,
a longer delay increases the likelihood of getting non-consecutive ISNs. This is
because the target can communicate with other hosts during the sampling period.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 149

The IP ID classes defined by Nmap are:

« IDsincremented by one each time (Class|1)

« IDsincremented by 256 each time (Class BI)*

« IDsincremented using random positive increments (Class RPI)
« IDscoming from arandom distribution (Class RD)

« Repeatable IDs (Class C)

« Zeroed out IDs (Class Z)”

The Timestamp classes defined by Nmap are:

« Timestamp clocks updated twice per second (Class 2HZ)

« Timestamp clocks updated 100 times per second (Class 100HZ)

« Timestamp clocks updated 1000 times per second (Class 1000HZ)
« Timestamp option not supported by the OS (Class U)

« Timestamp option set but having a value of zero (Class 2)*

The algorithms Nmap uses to classify the target into these different categories
are rather simplistic. For instance, IP IDs sampled are said to come from a
random distribution if at least one ID number is smaller then its predecessor.
Whilethisisindeed an indicator of arandom distribution, a particular sample
may not present this characteristics, but may still come from such a
digtribution. That being said, Nmap still achieves good accuracy using its
agorithms.

150

% «BJ” stands for “broken increment”. This 256-incremental behavior is seen on some
little endian platforms when the operating system “forgets’ to reorder the bytes.
Windows 95 fallsinto this “Broken incrementa” 1P IDs category.

% Linux kernel 2.4 fallsinto this category. This doesn’t mean that this system sends all
packets with an IP ID of zero, but it doesdo it for al of its SYN/ACK packets.

*8 Windows 2000 falls into this category. It supports the option, but waits until the tree-
way handshake is completed before sending any timestamp value.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

To give an example of how to interpret the TSeq test results of afingerprint
structure, let’s look at the line beginning with TSeq from the Linux example,

T Seq(Class=RI%gcd=<8%SI=>10000%I PID=1%TS=100HZ)

It says that the response packet to Nmap’s T Seq test would find the following
characteristics:

e C(Class=RI The I1SNs are randomly incremented
e Gcd=<8 The Greater Common Divisor of the ISN differencesis
expected to be smaller than 8 (hexadecimal value).
e S|=>10000 The standard deviation of the ISN differences is
expected to be greater than 10000.
e |PID=I The IP IDs are incremented by one.
e TS=100HZ The timestamp clock is updated 100 times per second.

General Remarks on OS differences

A quick analysis of the nmap-os-fingerprint file (from Nmap’s version
2.54Beta?9) alowsto draw the following observations:

« Windows systems respond to every test *;
2100.

« Linux, OpenBSD, FreeBSD, Solaris systems don't responseto T

« Thesetting of the TCP options in response to the T1 test may be used to
differentiate between broad families of OS. For instance,

- Mac OS systems prior to OS X tend to respond with MEWL or
MEWNNNT;

- Solaris systems tend to respond with NNTWM or NNTNWME;

- Linux systems tend to respond with MNNTNW (newer kernel
version), or MENNTNW (older kernd version);

- OpenBSD, FreeBSD, NetBSD, MacOS X, and Windows family
tend to respond with MNWNNT.

* Few listed exceptions are

Windows 98SE + IE5.55p1: T3(Resp=N), PU(Resp=N]|Y)

Windows NT 4.0 SP 6a+ hotfixes: PU(Resp=N[Y)

Windows XP Professional Release candidate 1 or 2: T2(Resp=N), T3(Resp=N),
T7(Resp=N)
%N rare cases, some of these systems do answer to T2.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 151

152

OS scan with Xprobe

Xprobe fingerprinting technique interrogates the target machine’ s ICMP protocol
implementation by sending it craft packets and observing the responsesit gets back.
Xprobe sends at most four packets. The program of the version examined is built asa
decision tree, and does not use alook-up fingerprint file. A graphical representation of
thislogic treeis given at the end of this section. The version examined during this
study was xprobel-0.0.2. It isthisversion that isdescribed below. Asof November
2004, the most recent version of xprobe is xprobe2-0.2. The underlying techniques to
identify the OS are essentialy the same, but the tool now relies on fuzzy signature
matching and probabilistic guesses. Some additional fields are also examined in
response packets.

Xprobe' s technique is stealthier than Nmap’s. The packets it sends out can appear as
being part of normal traffic operations. It is also an alternative to methods that depend
solely on the differences between TCP protocol implementations. The TCP stacks of
Microsoft based operating systems are very similar and therefore it is often quite
difficult to differentiate between them using TCP fingerprinting techniques.

Description of tests based on the UDP packet

Just like the PU test on Nmap, this test consists on sending a UDP datagram
to aclosed UDP port (32132 by default) in order to trigger an ICMP port
unreachable error message in response.

The IP total length of the crafted packet is 98 bytes (20B of |P header + 8B
of UDP header +70B of data). The DF hit flag isset. The 70 bytes of data
carried consist of al zeros.

Note: When a closed UDP port receives a packet, an ICMP Port Unreachable
error message is generated. If the port is open, no reply is generated since
UDPis adtateless protocol. However, when afiltering deviceis blocking
UDP traffic aimed at atarget, the packet will also remained unanswered.
Xprobe assumes a closed UDP destination port, and interprets a non-response
to this crafted packet as being the result of the presence of adevicefiltering
that port[6].

Xprobe then captures and analyses the response (if any) of thetarget. More
specifically, thisfirst packet allows X probe to conduct the following criterion
checks:

1. Didwereceive aresponse to this packet?

2. Wasthe Don't Fragment bit set in the target’ s response?

3. What istheIP Time To Live value in the target’ s response?

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

4. What Type of service was specified in the target’ s response? (default?
echoed? Other?)

5. What isthe amount of the data being echoed with the target’ s response?

6. Werethe following fields of the echoed message altered?

IPtota length field

- IPIdentification field

- IPFlags and Offset field
- IPchecksumfield

- UDP checksum field

Note that since Xprobe follows the branches of alogic tree, the program may
stops before completing all checks.

ICMP Echo Request packet

Thistest isan ICMP Echo request message sent to probe an ICMP Echo reply
message in response.

The IP total length of the crafted packet is 68 bytes (20B of |P header + 8B
of ICMP header + 40B of data). The 40 bytes of data carried consist of al
zeros. The DF hit flagisset. The TOS 8-hit field valueis set to “00000110”.
The ICMP typeis 8 but the codeis honzero (which is not standard). Thisisa
trick to differentiate the OSs that automatically zero-out this field from those
who echo back the value in their ICMP Echo Reply.

Xprobe then captures and analyses the response (if any) of the target. More
specifically, this packet allows X probe to conduct the following criterion
checks:

1. Didwereceive aresponse to this packet?

2. Wasthe Don’'t Fragment hit set in the target’ s response?

3. Wasthe IP Identification field set to zero?

4. What isthe IP Time To Live value in the target’ s response?

5. What Type of service was specified in the target’ s response?

6. What isthe ICMP code in the target’ s response?

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 153

ICMP Timestamp Request

Xprobe sends this packet only to test whether or not it gets a response back.
Thusthe only criteriais:

1. Didwereceive aresponse to this packet?

ICMP Information Request

Xprobe sends this packet only to test whether or not it gets a response back.
Thusthe only criteriais:

1. Didwereceive aresponse to this packet?

ICMP Address Mask Request

Xprobe sends this packet only to test whether or not it gets a response back.
Thusthe only criteriais:

1. Didwereceive aresponse to this packet?

General Remarks on OS differences

Windows family systems can be detected using one ICMP echo Request. It
suffices to set the ICMP code field to a nonzero value in the request packet.
In their ICMP Echo Reply, Windows systems overwrite this nonzero value to
set the field to zero while other systems just echo it.

Graphical representation of Xprobe’s logic tree

A scheme representing Xprobe' slogic tree is shown in the following four
pages. Thiswas drawn from examining the program code of xprobel-0.0.1
and xprobel-0.0.2.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

GqT

Legend

Xprobe sending a packet

Indicates that the branch of the tree continues on next page

Checks based on response to UDP Packet

Checks based on response to ICMP Echo Request Packet

Checks based on response to ICMP Timestamp Request Packet

Checks based on response to ICMP Information Request Packet

Checks based on response to ICMP Address Mask Request Packet

000 64K

Green Text Upgrade from version 0.0.1p1 to 0.0.2

961

(1) uop

ICMP Port Unreachable " 'SSPONse

error message

UDP protocol filtered

Precedence

Precedence Bits = 0xcO Precedence Bits != 0xcO

. Linux Kernel 2.0.x/2.2.x/2.4.x (act as routers)
. Cisco Routers with 10S 11.x-12.x
. Extreme Networks Switches

else
(The whole datagram echoed with the
ICMP Port Unreachable Error message)\

Not the whole datagram echoed with the
ICMP Port Unreachable Error message

e Cisco Routers with 10S 11.x-12.x * Linux Kernel 2.0.x/2.2.x/2.4.x
¢ Extreme Networks Switches

TTL <65 else
Echoed UDP Checksum =0 else
* Linux Kernel 2.0.x e Linux Kernel 2.2.x/2.4.x
Extreme Networks Switches + Cisco Routers with 10S 11.x-12.x ICMP
@ Echo D]
Request

ICMP Echo Reply

. No response
received P

ICMP Echo message filtered,
* Linux Kernel 2.2.x/2.4.x Assumed

nonzero IP ID IPID=0

. Linux Kernel 2..2.x/2.4.5+ . Linux Kernel 2.4.x

DF bit set DF bit not set

* Linux Kernel 2.4.x e LinuxKernel 2.2.x/2.4.5+
(i.e not 2.4.0-2.4.4)

Precedence Bits != 0xcO

Message.
Quoting size

64 bytes of data echoed else
(which, accordind to xprobe documentation,
8 bytes of data echoed corresponds to "more than 64 bytes") \
¢ Sun Solaris 2.3-2.8
¢ HP-UX1lx

3Com SuperStack Il switch SSW/NBSI-CF, 11.1.1.00S38

ICMP . MacOSs . Nokia IPSO 3.2-3.2.1 releng 783-849
. Ricoh Aficio AP4500 Network Laster Printer
(2) Timestamp + Shiva AccessPort Bridge/Router Software V 2.1.0
ReqUeSt Most IP Stacks . Linux 2.0.x/2.2.x/2.4.x (???rare cases????)

ICMP Timestamp
Reply No Response
¢+ HP-UX1lx

* Sun Solaris 2.3-2.8 . MacOS 7.x-7.9

20 bytes greater than the original value 20 bytes less than the original value

OpenBSD 2.6-2.9

Apollo Domain/OS SR10.4

NFR IDS Appliance

Extreme Networks switch
Network Systems router NS6114
(NSC 6600 series)

« Cabletron Systems SSR 8000
System Sowtware, V 3.1 B16

AIX

BSDI

NetBSD 1.1.x-1.2.x
MacOS X 1.0-1.2

equal0
OK incorrect
/ + Ultrix
ICMP ¢ FreeBSD22x-4.1 equal 0 incorrect.
equal 0 nonzero (2) Eeho M f;?o"kse . NetmsD —
ecl
+ BsDI . A Gty « Extreme Networks switch * NFRIDS
. uaaosg)?fg?zz.x Request + Network Systems router NS6114 Appliance
. act .0-1. ICMP Echo Reply (NSC 6600 series)
No Response received « Cabletron Systems SSR 8000
System Sowtware, V 3.1 B16
ICMP Echo message filtered, A/equal 0 nonzero‘
¢ Microsoft Windows based
« Open/Net/FreeBSD/DG-UX/HP-UX * NetBSD * FreeBSD22x-4.1
incorrect OK
\ * OpenBSD 26-2.9
. . * Apollo Domain/OS SR10.4
« Little endian BSDI *+ Bigendian BSDI « NFRIDS Appliance (mistake??... see Xprobe doc)

. Big endian NetBSD
1.1x-1.2x
. MacOS X 1.0-1.2

* Little endian NetBSD
1.1.x-1.2.x

equal 0 nonzero

. Apollo Domain/OS SR10.4

" : . [e] BSD 2.6-2.9
* NFRIDS Appliance (mistake??) pen

LST

8GT

/equal 0

* Microsoft Windows family

TTL<33 else

¢ Windows 95

equal 0 nonzero

¢ Windows 2000, Other Windows-based OS
SP1, SP2 ¢ Windows 98/98/SE

* Windows XP * Windows ME

* Windows NTsp3-

. Windows NTsp4+

ICMP
Response :
o (3) Timestamp @
Request
ICMP Timestamp No Response
Reply P
¢ Windows 98/98SE ¢ Windows NT SP 3-
* Windows ME * Windows NT SP 4+
ICMP
Address Response
(4) Mask ' Check
Request
Address vask "™ o
ress Masl
Reply response Addrsz:lyask response
* Windows 98/98SE * Windows ME .

Windows NT SP 3- .

HPUX 10.x

Windows NT SP 4+

SunOS 4.x

> 64—

nonzem\

ICMP_ Response
(3) Information Check
Request

ICMP Info Reply

Open\m

¢ HPUX10.x
*« DGUX

Sunos 4.x

OK incorrect

. HPUX 10.x
* DGUX/Compaq Trué4 *
* OpenVMS with
Process Software TCPWare
. SunOS 4.x

OpenVMS with
Digital TCP Services

nonzero
T
. DGUX/Compaq Tru64

. SunOS 4.x . OpenVMS with

no response

(accuracy dropped)

* Allothers...

DF bit set not set
Ultrix, Novell
DF bit set not set
¢ OpenBSD 2.1-2.3.x, 2.4-2.5
+ NetBSD15,14.1,14 TTL<129 else

. IBM OS/390

Unknown Unix * Novel (FreeBSD4.3-

current (?))

Ultrix,
HPUX 10.20(?)

nonzero equal 0

+ OpenBSD24-25
* NetBSD 15,1.4.1,14
. IBM 0S/390

* OpenBSD 2.1-2.3.x,

Telse_
T

* IBM 0S/390

> 64/
p

OpenBSD 2.4-2.5
NetBSD 1.5,1.4.1, 1.4

Process Software TCPWare

Telse

. DGUX/Compaq Tru64

This page intentionally left blank

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 159

List of
symbols/abbreviations/acronyms/initialisms

ARP Address Resol ution Protocol

CRC Communications Research Centre
DND Department of National Defence
DNS Domain Name System

DRDC Defence Research and Devel opment Canada
ICMP Internet Control Message Protocol
ID Identifier

IP Internet Protocol

IPSec | P Security Protocol

ISN Initial Sequence Number

LAN Local Area Network

NAT Network Address Trandation

NIDS Network Intrusion Detection System
oS Operating System

OSes Operating Systems (plurial)

RFC Request For Comments

TCP Transmission Control Protocol

UDP User Datagram Protocol

VPN Virtual Private Network

WLAN Wireless Local Area Network

160 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Glossary

Active/Passive
information
gathering

Network Intrusion
Detection System
(NIDS)

OS fingerprinting:

packet

protocol

TCP/IP stack

In networking, information gathering refers to the
process of collecting information about the network and
its components. The term active refers to methods that
inject traffic (probes) into the network. The term passive
indicate that the processis based on methods that silently
monitor the network to collect information.

NIDS sensors are deployed in strategic locations within
the network infrastructure to monitor network traffic
passively in order to detect attacks and intrusions.

Identification of operating systems by comparing key
features of an observed behaviour with known signatures
(patterns). This processissimilar to identifying an
unknown person by taking his or her unique fingerprints
and finding a match in a database of known fingerprints.

A small, self-contained parcel of data sent across a
computer network. Each packet contains headers of
encapsulated protocols and data to be delivered. One of
the header identifies the sender and the recipient.

A design that specifies the details of how computers
interact, including the format of messages they exchange
and how errors are handled.

TCP/IP stack refers to the implementation of the protocol
suite used in the Internet. Although the suite contains
many protocols, TCP and IP are two of the most
important.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 161

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document. 2.
Organizations for whom the document was prepared, e.g. Establishment sponsoring a

contractor’'s report, or tasking agency, are entered in section 8.)
Communications Research Centre Canada
3701 Carling Avenue
Ottawa, Ontario, CANADA, K2H 8S2

SECURITY CLASSIFICATION
(overall security classification of the document,
including special warning terms if applicable)

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate

abbreviation (S,C or U) in parentheses after the title.)

A Multi-Packet Signature Approach to Passive Operating System Detection (U)

4. AUTHORS (Last name, first name, middle initial)

De Montigny-Leboeuf, Annie

5. DATE OF PUBLICATION
document)

(month and year of publication of

January 2005

6a.NO. OF PAGES (total 6b. NO. OF REFS (total cited in

containing information. Include document)
Annexes, Appendices, etc.)
177 33

7. DESCRIPTIVE NOTES (the category of the document, e.g.technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Joint CRC/DRDC Technical Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the

address.)
Defence R&D Canada - Ottawa
3701 Carling Avenue
Ottawa, Ontario, K1A 0Z4

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research
and development project or grant number under which the
document was written. Please specify whether project or grant)

15bf

9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written)

10a. ORIGINATOR’'S DOCUMENT NUMBER (the official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

CRC-TN-2005-001

10b. OTHER DOCUMENT NOS. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor)

DRDC Ottawa TM 2005-018

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

(x) Unlimited distribution

() Distribution limited to defence departments and defence contractors; further distribution only as approved

() Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
() Distribution limited to government departments and agencies; further distribution only as approved

() Distribution limited to defence departments; further distribution only as approved

() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider

announcement audience may be selected.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

DCDO03 2/06/87

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly

desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

Remote operating system discovery can provide valuable contextual information regarding the computers connected to
the network. In particular, operating system discovery can help identify potential vulnerable computers or may help
prioritize alarms and responses in times of attack. The Network Security Research Group at the Communication
Research Centre (CRC) has developed novel techniques for passive operating system discovery. The methodology
developed allows derivation of a signature from a set of packets. The tests are conducted passively on regular traffic.
They are non-intrusive and do not rely on access to application or user data. Because they are passive, the techniques
do not consume bandwidth and do not disrupt network assets. Over a dozen tests have been developed to analyse
headers of packets seen on a network. The tests are conducted on headers of various types of protocols: ARP, IP,
ICMP, UDP and TCP. This document describes the tests in detail. They have been implemented in a prototype written
in JAVA, which includes a database containing the “fingerprints” of almost 200 versions of operating systems. The
prototype was used to collect these signatures from our testbed and was also used on real user traffic for preliminary
evaluation of the tests’ performance.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful

in cataloguing the document. They should be selected so that no security classification is required. Identifiers such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

passive network traffic monitoring, operating system fingerprinting, multi-packet signatures

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

Defence R&D Canada R & D pour la défense Canada

Canada’s leader in Defence Chef de file au Canada en matiere
and National Security de science et de technologie pour
Science and Technology la défense et la sécurité nationale

DEFENCE QV 'DEFENSE

www.drdc-rddc.gc.ca

